nLab equivalence extensionality

Context

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Contents

Definition

In dependent type theory with identity types, equivalence types, and dependent function types, equivalence extensionality characterizes the identity type of equivalence types and is the property that for all equivalences f:ABf:A \simeq B and g:ABg:A \simeq B, there are equivalences

equivext(f,g):(f= ABg) x:Af(x)= Bg(x). \mathrm{equivext}(f, g) \;\;\colon\;\; \big(f =_{A \simeq B} g\big) \;\simeq\; \prod_{x \colon A} \, f(x) =_{B} g(x) \,.

Proposition

Equivalence extensionality is equivalent to function extensionality.

Proof

Function extensionality implies equivalence extensionality because, in the presence of function extensionality, the property of being an equivalence is a proposition.

For the converse, we show that equivalence extensionality implies weak function extensionality (which implies function extensionality). Let XX be a type and YY be a family of contractible types indexed by XX. The projection map π: x:XY(x)X\pi \colon \sum_{x \colon X} Y(x) \to X is an equivalence. By equivalence extensionality, it follows that post-composition with π\pi defines an equivalence π !:(X x:XY(x))(XX)\pi_! \colon (X \simeq \sum_{x \colon X} Y(x)) \simeq (X \simeq X). In particular, the fiber of π !\pi_! at the identity equivalence id Xid_X is contractible. One can show (again using equivalence extensionality) that x:XY(x)\prod_{x \colon X} Y(x) is a retract of the fiber of π !\pi_! at id Xid_X: there is a section sending f: x:XY(x)f \colon \prod_{x \colon X} Y(x) to x(x,f(x)):X x:XY(x)x \mapsto (x, f(x)) \colon X \simeq \sum_{x \colon X} Y(x) and a retraction sending e:X x:XY(x)e \colon X \simeq \sum_{x \colon X} Y(x) with π !e=id X\pi_!e = id_X to xsnd(e(x))x \mapsto snd(e(x)) (modulo transport). Thus x:XY(x)\prod_{x \colon X} Y(x) is also contractible.

See also

References

Proof that equivalence extensionality implies function extensionality in Agda:

Last revised on March 24, 2025 at 12:39:40. See the history of this page for a list of all contributions to it.