# nLab eventuality filter

Eventuality filters

# Eventuality filters

## Idea

Eventuality filters are the key translation between filters and nets in analysis and topology. Specifically:

• Given a net $n$ (or in particular a sequence) in a set $X$, the eventuality filter of $n$ is a proper filter on $X$;

• Every proper filter on $X$ is the eventuality filter of some net in $X$;

• Two nets are equivalent for purposes of convergence (meaning precisely that they are subnets of each other in the sense of Årnes & Andenæs) if and only if their eventuality filters are equal.

This last point is not so much a result as the definition of the subnet relation (or at least of its symmetrisation, the relation of equivalence of nets). One still needs to check that every use of nets in analysis and topology (or other fields) actually respects this notion of equivalence of nets, if one wishes to convert nets to filters.

## Definition

Let $X$ be a set, let $D$ be a directed set, and let $n$ be a function from $D$ to $X$, so that $n$ is a net in $X$. Given a subset $A$ of $X$, $n$ is eventually in $A$ if, for some $i$ in $D$, for each $j \geq i$ in $D$, $n_j \in A$. The collection $F_n$ of all those subsets $A$ such that $n$ is eventually in $A$ is a proper filter on $X$, called the eventuality filter of $n$.

In symbols,

$F_n \coloneqq \{ A \subseteq X \;|\; \ess \forall\, j,\; n_j \in A \} ,$

where $\ess \forall\, j$ is read ‘for essentially each $j$’ or ‘eventually for each $j$’ and means $\exists\, i,\; \forall j \geq i$. In the case where $D$ is the set of natural numbers directed by $\leq$, so that $n$ is an infinite sequence ($\omega$-sequence) in $X$, then $\ess \forall\, j$ may be read as ‘for all but finitely many $j$’.

## Converse

Given a filter $F$ on $X$, let $D$ be the binary relation $\in_X$ restricted to $F$, viewed as a subset of the cartesian product $X \times F$, ordered so that $(y, A) \leq (z, B)$ means simply that $B \subseteq A$. Let $n\colon D \to X$ map $(y, A)$ simply to $y$. Then $D$ is directed (so that $n$ is a net in $X$) iff $F$ is proper; and in that case, the eventuality filter of the net $n$ is $F$.

It is possible to define $D$ as ${{\in_X}|_F} \times \mathbb{N}$ (instead of as ${\in_X}|_F$ as done above) so that the direction on $D$ is a partial order, if one really wants to. (Then $(y, A, i) \leq (z, B, j)$ means that $B \subseteq A$, $i \leq j$, and $y = z$ if $i = j$.)

Last revised on May 29, 2022 at 16:17:55. See the history of this page for a list of all contributions to it.