see also algebraic topology, functional analysis and homotopy theory
Basic concepts
topological space (see also locale)
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
subsets are closed in a closed subspace precisely if they are closed in the ambient space
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Basic homotopy theory
A topological space is sequential if (in a certain sense) you can do topology in it using only sequences instead of more general nets.
Sequential spaces are a kind of nice topological space.
A sequential topological space is a topological space $X$ such that a subset $A$ of $X$ is closed if (hence iff) it contains all the limit points of all sequences of points of $A$—or equivalently, such that $A$ is open if (hence iff) any sequence converging to a point of $A$ must eventually be in $A$.
Equivalently, a topological space is sequential iff it is a quotient space (in $Top$) of a metric space.
Every Frechet–Uryson space is a sequential space.
Every topological space satisfying the first countability axiom is Frechet–Uryson, hence a sequential space. In particular, this includes any metrizable space .
Every quotient of a sequential space is sequential. In particular, every CW complex is also a sequential space. (Conversely, every sequential space is a quotient of a metrizable space, giving the alternative definition).
The category of sequential spaces is a coreflective subcategory of the category of all topological spaces.
The category of sequential spaces is a reflective subcategory of the category of subsequential spaces, much as $Top$ itself is a reflective subcategory of the category of all pseudotopological spaces.
The category of sequential spaces is cartesian closed. See also convenient category of topological spaces.
Everything above assumes excluded middle (and probably at least countable choice). Without that, it's hard to prove the existence of any nontrivial sequential spaces.
For example, to prove that the real line is sequential as a topological space, we must find, given a set $A$ and a point $x$ such that every sequence converging to $x$ is eventually in $A$, a positive real number $\delta$ such that ${]x - \delta, x + \delta[} \subseteq A$, and it's not clear how to construct that number from the data at hand. (One might consider various specific sequences that converge to $x$, such as $(x + 1/n)_n$ and $(x - 1/n)_n$, and use them to find upper bounds on $\delta$; but no finite set of sequences will give an entire interval around $x$, and proving that an infinite set of sequences that does cover an entire interval has a uniform positive upper bound on $\delta$ is very tricky.)
The usual proof that the real line (or any first-countable topological space) is sequential uses excluded middle and countable choice: Supposing that $A$ is not open, consider $x \in A$ such that $x \notin Int(A)$, pick for each $\delta = 1/n$ (or for each of the countably many basic neighbourhoods $U_n$ of $x$ in a general first-countable space) a point $y_n$ such that $d(x,y_n) \lt 1/n$ (or such that $y_n \in U_n$) but $y_n \notin A$ (which must exist since none of these balls/neighbourhoods are contained in $A$), note that $\lim_n y_n = x$, and get a contradiction.
For this reason, constructive analysis often requires the use of general nets (or filters) in situations where classical analysis can get by with sequences. (It is trivially true, in any topological space, that a set $A$ is open if every net that converges to an element $x$ of $A$ belongs eventually to $A$, or equivalently that $A$ belongs to any filter that converges to $x$; you just use the neighbourhood filter of $x$.)