nLab grouplike A3-space

Context

Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Higher algebra

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type
falseinitial objectempty type
proposition(-1)-truncated objecth-proposition, mere proposition
proofgeneralized elementprogram
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
logical conjunctionproductproduct type
disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)
implicationinternal homfunction type
negationinternal hom into initial objectfunction type into empty type
universal quantificationdependent productdependent product type
existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)
equivalencepath space objectidentity type/path type
equivalence classquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
completely presented setdiscrete object/0-truncated objecth-level 2-type/set/h-set
setinternal 0-groupoidBishop set/setoid
universeobject classifiertype of types
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Contents

Idea

The invertible version of the A3-space up to homotopy, without any higher coherences for inverses.

Definition

A grouplike A 3A_3-space or grouplike A 3A_3-algebra in homotopy types or H-group consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • A unary operation ι:AA\iota: A \to A
  • A left unitor
    λ u: (a:A)μ(e,a)=a\lambda_u:\prod_{(a:A)} \mu(e,a)=a
  • A right unitor
    ρ u: (a:A)μ(a,e)=a\rho_u:\prod_{(a:A)} \mu(a,e)=a
  • An asssociator
    α: (a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\alpha:\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
  • A left invertor
    l: (a:A)μ(ι(a),a)=el:\prod_{(a:A)} \mu(\iota(a), a)=e
  • A right invertor
    r: (a:A)μ(a,ι(a))=er:\prod_{(a:A)} \mu(a,\iota(a))=e

One could also speak of grouplike A 3A_3-spaces where the existence of left and right inverses are mere property rather than structure, which is a grouplike A 3A_3-space as defined above with additional structure specifying that the types (a:A)μ(ι(a),a)=e\prod_{(a:A)} \mu(\iota(a), a)=e and (a:A)μ(a,ι(a))=e\prod_{(a:A)} \mu(a,\iota(a))=e are contractible:

c l: l: (a:A)μ(ι(a),a)=e b: (a:A)μ(ι(a),a)=el=bc_l: \sum_{l:\prod_{(a:A)} \mu(\iota(a), a)=e} \prod_{b:\prod_{(a:A)} \mu(\iota(a), a)=e} l = b
c r: r: (a:A)μ(a,ι(a))=e b: (a:A)μ(a,ι(a))=er=bc_r: \sum_{r:\prod_{(a:A)} \mu(a,\iota(a))=e} \prod_{b:\prod_{(a:A)} \mu(a,\iota(a))=e} r = b

or equivalently,

c l: (a:A) (l:μ(ι(a),a)=e) (b:μ(ι(a),a)=e)l=bc_l:\prod_{(a:A)} \sum_{(l:\mu(\iota(a), a)=e)} \prod_{(b:\mu(\iota(a), a)=e)} l = b
c r: (a:A) (r:μ(a,ι(a))=e) (r:μ(a,ι(a))=e)r=bc_r:\prod_{(a:A)} \sum_{(r:\mu(a,\iota(a))=e)} \prod_{(r:\mu(a,\iota(a))=e)} r = b

Examples

  • The integers are an grouplike A 3A_3-space.

  • Every loop space is naturally an grouplike A 3A_3-space with path concatenation as the operation. In fact every loop space is a \infty-group.

  • A group is a 0-truncated grouplike A 3A_3-space.

See also

Created on June 9, 2022 at 10:41:48. See the history of this page for a list of all contributions to it.