The idea of topological quantum computation via a Chern-Simons theory with anyon braiding defects is due to:
Alexei Kitaev, Fault-tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2-30 [doi:10.1016/S0003-4916(02)00018-0, arXiv:quant-ph/9707021]
Michael Freedman, P/NP, and the quantum field computer, Proc. Nat. Acad. Sci. 95 1 (1998) 98-101 [doi:10.1073/pnas.95.1.9]
Michael Freedman, Alexei Kitaev, Michael Larsen, Zhenghan Wang, Topological quantum computation, Bull. Amer. Math. Soc. 40 (2003), 31-38 (arXiv:quant-ph/0101025, doi:10.1090/S0273-0979-02-00964-3, pdf)
Michael Freedman, Michael Larsen, Zhenghan Wang, A modular functor which is universal for quantum computation, Communications in Mathematical Physics. 227 3 (2002) 605-622 [doi:10.1007/s002200200645, arXiv:quant-ph/0001108]
(specifically via su(2)-anyons)
Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, Sankar Das Sarma, Non-Abelian Anyons and Topological Quantum Computation, Rev. Mod. Phys. 80 1083 (2008) [doi:10.1103/RevModPhys.80.1083, arXiv:0707.1888]
Dmitry Melnikov, Andrei Mironov, Sergey Mironov, Alexei Morozov, Andrey Morozov, Towards topological quantum computer, Nucl. Phys. B926 (2018) 491-508 (arXiv:1703.00431, doi:10.1016/j.nuclphysb.2017.11.016)
and via a Dijkgraaf-Witten theory (like Chern-Simons theory but with discrete gauge group):
R. Walter Ogburn, John Preskill, Topological Quantum Computation, in: Quantum Computing and Quantum Communications, Lecture Notes in Computer Science 1509, Springer (1998) [doi:10.1007/3-540-49208-9_31]
Carlos Mochon, Anyons from non-solvable finite groups are sufficient for universal quantum computation, Phys. Rev. A 67 022315 (2003) [doi:10.1103/PhysRevA.67.022315, arXiv:quant-ph/0206128]
Carlos Mochon, Anyon computers with smaller groups, Phys. Rev. A 69 032306 (2004) [doi:10.1103/PhysRevA.69.032306, arXiv:quant-ph/0306063]
Monographs:
Zhenghan Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics 112, AMS 2010 (ISBN-13: 978-0-8218-4930-9, pdf)
Jiannis K. Pachos, Introduction to Topological Quantum Computation, Cambridge University Press (2012) [doi:10.1017/CBO9780511792908]
Tudor D. Stanescu, Part IV of: Introduction to Topological Quantum Matter & Quantum Computation, CRC Press 2020 (ISBN:9780367574116)
Steven H. Simon, Topological Quantum, Oxford University Press (2023) [ISBN:9780198886723, pdf, webpage]
Review:
Louis Kauffman, Quantum Topology and Quantum Computing, in: Samuel J. Lomonaco (ed.), Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium, Proceedings of Symposia in Applied Mathematics 58, AMS (2002) [pdf, doi:10.1090/psapm/058]
(in relation to quantum topology)
John Preskill: Topological Quantum Computation, Chapter 9 in: Quantum Computation, lecture notes (since 2004) [pdf, pdf]
Gavin K. Brennen, Jiannis K. Pachos, Why should anyone care about computing with anyons?, Proc. R. Soc. A 464 (2008) 1-24 [doi:10.1098/rspa.2007.0026, arXiv:0704.2241]
Ady Stern, Netanel H. Lindner, Topological Quantum Computation – From Basic Concepts to First Experiments, Science 339 6124 (2013) 1179-1184 [doi:10.1126/science.1231473, spire:2748124]
Eric C. Rowell, An Invitation to the Mathematics of Topological Quantum Computation, J. Phys.: Conf. Ser. 698 (2016) 012012 [doi:10.1088/1742-6596/698/1/012012, arXiv:1601.05288]
Ananda Roy, David P. DiVincenzo, Topological Quantum Computing, Lecture notes of the 48th IFF Spring School (2017) [arXiv:1701.05052]
Ville Lahtinen, Jiannis K. Pachos, A Short Introduction to Topological Quantum Computation, SciPost Phys. 3 021 (2017) [doi: 10.21468/SciPostPhys.3.3.021, arXiv:1705.04103]
Eric C. Rowell, Zhenghan Wang, Mathematics of Topological Quantum Computing, Bull. Amer. Math. Soc. 55 (2018), 183-238 (arXiv:1705.06206, doi:10.1090/bull/1605)
Bernard Field, Tapio Simula, Introduction to topological quantum computation with non-Abelian anyons, Quantum Science and Technology 3 (2018) 045004 [doi:10.1088/2058-9565/aacad2, arXiv:1802.06176]
Muhammad Ilyas, Quantum Field Theories, Topological Materials, and Topological Quantum Computing [arXiv:2208.09707]
Eric C. Rowell, Braids, Motions and Topological Quantum Computing [arXiv:2208.11762, spire:2141848]
Hisham Sati, Sachin Valera: Topological Quantum Computing, Encyclopedia of Mathematical Physics 2nd ed 4 (2025) 325-345 [doi:10.1016/B978-0-323-95703-8.00262-7]
Focus on abelian anyons:
Jiannis K. Pachos, Quantum computation with abelian anyons on the honeycomb lattice, International Journal of Quantum Information 4 6 (2006) 947-954 [doi:10.1142/S0219749906002328, arXiv:quant-ph/0511273]
James Robin Wootton, Dissecting Topological Quantum Computation, PhD thesis, Leeds (2010) [ethesis:1163, pdf, pdf]
“non-Abelian anyons are usually assumed to be better suited to the task. Here we challenge this view, demonstrating that Abelian anyon models have as much potential as some simple non-Abelian models. […] Though universal non-Abelian models are admittedly the holy grail of topological quantum computation, and rightly so, this thesis has shown that Abelian models are just as useful as non-universal non-Abelian models. […] Abelian models are a computationally powerful, fault-tolerant and experimentally realistic prospect for quantum computation.”
Seth Lloyd, Quantum computation with abelian anyons, Quantum Information Processing 1 1/2 (2002) [doi:10.1023/A:1019649101654, arXiv:quant-ph/0004010]
James R. Wootton, Jiannis K. Pachos: Universal Quantum Computation with Abelian Anyon Models, Electronic Notes in Theoretical Computer Science 270 2 (2011) 209-218 [doi:10.1016/j.entcs.2011.01.032, arXiv:0904.4373]
see also:
Menelaos Zikidis: Abelian Anyons and Fractional Quantum Hall Effect, Seminar notes (2017) [pdf, pdf]
Wade Bloomquist, Zhenghan Wang, On Topological Quantum Computing With Mapping Class Group Representations, J. Phys. A: Math. Theor. 52 (2019) 015301 [doi:10.1088/1751-8121/aaeea1, arXiv:1805.04622]
Yichen Hu, Biao Lian: Chiral Sachdev-Ye model: Integrability and chaos of anyons in , Phys. Rev. B 105 (2022) 125109 [doi:10.1103/PhysRevB.105.125109]
Realization in experiment (so far via quantum simulation of anyons on non-topological quantum hardware, cf. FF24, Fig 5, as in “topological codes” for quantum error correction):
on superconducting qbits:
on trapped-ion quantum hardware:
Daniel Nigg, Markus Mueller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel A. Martin-Delgado, Rainer Blatt: Experimental Quantum Computations on a Topologically Encoded Qubit, Science 18 Jul 2014: Vol. 345, Issue 6194, pp. 302-305 (arXiv:1403.5426, doi:10.1126/science.1253742)
Mohsin Iqbal, Nathanan Tantivasadakarn: Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer, Nature Communications Physics 7 (2024) 205 [doi:10.1038/s42005-024-01698-3, arXiv:2302.01917]
Mohsin Iqbal, Nathanan Tantivasadakarn, R. Verresen et al., Figure 5 in : Non-Abelian topological order and anyons on a trapped-ion processor, Nature 626 (2024) 505–511 [doi:10.1038/s41586-023-06934-4]
Nature research briefing: Topological matter created on a quantum chip produces quasiparticles with computing power [doi:10.1038/d41586-023-04126-8]
Michael Foss-Feig, Guido Pagano, Andrew C. Potter, Norman Y. Yao: Progress in Trapped-Ion Quantum Simulation, Annual Reviews of Condensed Matter Physics (2024) [arXiv:2409.02990 doi:10.1146/annurev-conmatphys-032822-045619]
Discussion of anyon braid gates via homotopy type theory:
David Jaz Myers, Hisham Sati, Urs Schreiber: Topological Quantum Gates in Homotopy Type Theory, Comm. Math. Phys. 405 172 (2024) [arXiv:2303.02382, doi:10.1007/s00220-024-05020-8]
David Jaz Myers: Topological Quantum Gates, talk at Running HoTT 2024, CQTS@NYUAD (April 2024) [video:kt]
On linear representations of braid groups (see also at braid group statistics and interpretation as quantum gates in topological quantum computation):
Review:
Chen Ning Yang, M. L. Ge (eds.). Braid Group, Knot Theory and Statistical Mechanics, Advanced Series in Mathematical Physics 9, World Scientific (1991) doi:10.1142/0796
(focus on quantum Yang-Baxter equation)
Camilo Arias Abad, Introduction to representations of braid groups, Rev. colomb. mat. vol.49 no.1 (2015) (arXiv:1404.0724, doi:10.15446/recolma.v49n1.54160)
Toshitake Kohno, Introduction to representation theory of braid groups, Peking 2018 (pdf, pdf)
in relation to modular tensor categories:
Braid representations from the monodromy of the Knizhnik-Zamolodchikov connection on bundles of conformal blocks over configuration spaces of points:
Ivan Todorov, Ludmil Hadjiivanov, Monodromy Representations of the Braid Group, Phys. Atom. Nucl. 64 (2001) 2059-2068; Yad.Fiz. 64 (2001) 2149-2158 arXiv:hep-th/0012099, doi:10.1134/1.1432899
Ivan Marin, Sur les représentations de Krammer génériques, Annales de l’Institut Fourier, 57 6 (2007) 1883-1925 numdam:AIF_2007__57_6_1883_0
and understood in terms of anyon statistics:
Braid representations seen inside the topological K-theory of the braid group‘s classifying space:
Alejandro Adem, Daniel C. Cohen, Frederick R. Cohen, On representations and K-theory of the braid groups, Math. Ann. 326 (2003) 515-542 (arXiv:math/0110138, doi:10.1007/s00208-003-0435-8)
Frederick R. Cohen, Section 3 of: On braid groups, homotopy groups, and modular forms, in: J.M. Bryden (ed.), Advances in Topological Quantum Field Theory, Kluwer 2004, 275–288 (pdf)
See also:
As quantum gates for topological quantum computation with anyons:
Louis H. Kauffman, Samuel J. Lomonaco, Braiding Operators are Universal Quantum Gates, New Journal of Physics, Volume 6, January 2004 (arXiv:quant-ph/0401090, doi:10.1088/1367-2630/6/1/134)
Samuel J. Lomonaco, Louis Kauffman, Topological Quantum Computing and the Jones Polynomial, Proc. SPIE 6244, Quantum Information and Computation IV, 62440Z (2006) (arXiv:quant-ph/0605004)
(braid group representation serving as a topological quantum gate to compute the Jones polynomial)
Louis H. Kauffman, Samuel J. Lomonaco, Topological quantum computing and braid group representations, Proceedings Volume 6976, Quantum Information and Computation VI; 69760M (2008) (doi:10.1117/12.778068, rg:228451452)
C.-L. Ho, A.I. Solomon, C.-H.Oh, Quantum entanglement, unitary braid representation and Temperley-Lieb algebra, EPL 92 (2010) 30002 (arXiv:1011.6229)
Louis H. Kauffman, Majorana Fermions and Representations of the Braid Group, International Journal of Modern Physics AVol. 33, No. 23, 1830023 (2018) (arXiv:1710.04650, doi:10.1142/S0217751X18300235)
David Lovitz, Universal Braiding Quantum Gates [arXiv:2304.00710]
Introduction and review:
Colleen Delaney, Eric C. Rowell, Zhenghan Wang, Local unitary representations of the braid group and their applications to quantum computing, Revista Colombiana de Matemáticas(2017), 50 (2):211 (arXiv:1604.06429, doi:10.15446/recolma.v50n2.62211)
Eric C. Rowell, Braids, Motions and Topological Quantum Computing arXiv:2208.11762
Realization of Fibonacci anyons on quasicrystal-states:
Realization on supersymmetric spin chains:
See also:
On approximating (cf. the Solovay-Kitaev theorem) given quantum gates by (i.e. compiling them to) cicuits of anyon braid gates (generally considered for su(2)-anyons and here mostly for universal Fibonacci anyons, to some extent also for non-universal Majorana anyons):
Nicholas E. Bonesteel, Layla Hormozi, Georgios Zikos, Steven H. Simon, Braid Topologies for Quantum Computation, Phys. Rev. Lett. 95 140503 (2005) [doi:10.1103/PhysRevLett.95.140503, arXiv:quant-ph/0505065]
Layla Hormozi, Georgios Zikos, Nicholas E. Bonesteel, Steven H. Simon, Topological Quantum Compiling, Phys. Rev. B 75 165310 (2007) [doi:10.1103/PhysRevB.75.165310, arXiv:quant-ph/0610111]
Layla Hormozi, Nicholas E. Bonesteel, Steven H. Simon, Topological Quantum Computing with Read-Rezayi States, Phys. Rev. Lett. 103 160501 (2009) [doi:10.1103/PhysRevLett.103.160501, arXiv:0903.2239]
M. Baraban, Nicholas E. Bonesteel, Steven H. Simon, Resources required for topological quantum factoring, Phys. Rev. A 81 062317 (2010) [doi:10.1103/PhysRevA.81.062317, arXiv:1002.0537]
(focus on compiling Shor's algorithm)
Vadym Kliuchnikov, Alex Bocharov, Krysta M. Svore, Asymptotically Optimal Topological Quantum Compiling, Phys. Rev. Lett. 112 140504 (2014) [doi:10.1103/PhysRevLett.112.140504, arXiv:1310.4150, talk recording: doi:10.48660/13100129]
Joren W. Brunekreef, Topological Quantum Computation and Quantum Compilation, Utrecht (2014) [hdl:20.500.12932/17738]
Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang, Dong-Ling Deng, Topological Quantum Compiling with Reinforcement Learning, Phys. Rev. Lett. 125 170501 (2020) [doi:10.1103/PhysRevLett.125.170501, arXiv:2004.04743]
Emil Génetay-Johansen, Tapio Simula, Section IV of: Fibonacci anyons versus Majorana fermions – A Monte Carlo Approach to the Compilation of Braid Circuits in Anyon Models, PRX Quantum 2 010334 (2021) [doi:10.1103/PRXQuantum.2.010334, arXiv:2008.10790]
Cheng-Qian Xu, D. L. Zhou, Quantum teleportation using Ising anyons, Phys. Rev. A 106 012413 (2022) [doi:10.1103/PhysRevA.106.012413, arXiv:2201.11923]
(focus on implemening the quantum teleportation-protocol with Ising anyons)
Approximating all topological quantum gates by just the weaves among all braids:
Steven H. Simon, Nick E. Bonesteel, Michael H. Freedman, N. Petrovic, Layla Hormozi, Topological Quantum Computing with Only One Mobile Quasiparticle, Phys. Rev. Lett. 96 (2006) 070503 (arXiv:quant-ph/0509175, doi:10.1103/PhysRevLett.96.070503)
Layla Hormozi, Georgios Zikos, Nick E. Bonesteel, Steven H. Simon, Topological quantum compiling, Phys. Rev. B 75, 165310 (doi:10.1103/PhysRevB.75.165310, arXiv:quant-ph/0610111)
Mohamed Taha Rouabah, Compiling single-qubit braiding gate for Fibonacci anyons topological quantum computation (arXiv:2008.03542)
Last revised on December 12, 2024 at 13:14:42. See the history of this page for a list of all contributions to it.