nLab topological quantum computation with anyons -- references

Topological quantum computation with anyons

The idea of topological quantum computation via a Chern-Simons theory with anyon braiding defects is due to:

and via a Dijkgraaf-Witten theory (like Chern-Simons theory but with discrete gauge group):

Monographs:

Review:

Focus on abelian anyons:

  • Jiannis K. Pachos, Quantum computation with abelian anyons on the honeycomb lattice, International Journal of Quantum Information 4 6 (2006) 947-954 [doi:10.1142/S0219749906002328, arXiv:quant-ph/0511273]

  • James Robin Wootton, Dissecting Topological Quantum Computation, PhD thesis, Leeds (2010) [ethesis:1163, pdf, pdf]

    “non-Abelian anyons are usually assumed to be better suited to the task. Here we challenge this view, demonstrating that Abelian anyon models have as much potential as some simple non-Abelian models. […] Though universal non-Abelian models are admittedly the holy grail of topological quantum computation, and rightly so, this thesis has shown that Abelian models are just as useful as non-universal non-Abelian models. […] Abelian models are a computationally powerful, fault-tolerant and experimentally realistic prospect for quantum computation.”

  • Seth Lloyd, Quantum computation with abelian anyons, Quantum Information Processing 1 1/2 (2002) [doi:10.1023/A:1019649101654, arXiv:quant-ph/0004010]

  • James R. Wootton, Jiannis K. Pachos: Universal Quantum Computation with Abelian Anyon Models, Electronic Notes in Theoretical Computer Science 270 2 (2011) 209-218 [doi:10.1016/j.entcs.2011.01.032, arXiv:0904.4373]

see also:

Realization in experiment (so far via quantum simulation of anyons on non-topological quantum hardware, cf. FF24, Fig 5, as in “topological codes” for quantum error correction):

on superconducting qbits:

on trapped-ion quantum hardware:

Discussion of anyon braid gates via homotopy type theory:

Braid group representations (as topological quantum gates)

On linear representations of braid groups (see also at braid group statistics and interpretation as quantum gates in topological quantum computation):

Review:

in relation to modular tensor categories:

  • Colleen Delaney, Lecture notes on modular tensor categories and braid group representations, 2019 (pdf, pdf)

Braid representations from the monodromy of the Knizhnik-Zamolodchikov connection on bundles of conformal blocks over configuration spaces of points:

and understood in terms of anyon statistics:

Braid representations seen inside the topological K-theory of the braid group‘s classifying space:

See also:

  • R. B. Zhang, Braid group representations arising from quantum supergroups with arbitrary qq and link polynomials, Journal of Mathematical Physics 33, 3918 (1992) (doi:10.1063/1.529840)

As quantum gates for topological quantum computation with anyons:

Introduction and review:

Realization of Fibonacci anyons on quasicrystal-states:

Realization on supersymmetric spin chains:

  • Indrajit Jana, Filippo Montorsi, Pramod Padmanabhan, Diego Trancanelli, Topological Quantum Computation on Supersymmetric Spin Chains [[arXiv:2209.03822]]

See also:


Compilation to braid gate circuits

On approximating (cf. the Solovay-Kitaev theorem) given quantum gates by (i.e. compiling them to) cicuits of anyon braid gates (generally considered for su(2)-anyons and here mostly for universal Fibonacci anyons, to some extent also for non-universal Majorana anyons):

Approximating all topological quantum gates by just the weaves among all braids:

Last revised on December 12, 2024 at 13:14:42. See the history of this page for a list of all contributions to it.