nLab
anti de Sitter group
Redirected from "AdS Lie algebra".
Contents
Context
Riemannian geometry
Group Theory
group theory
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
Contents
Idea
The anti de Sitter group is the isometry group O ( d − 1 , 2 ) O(d-1,2) of d d -dimensional anti de Sitter spacetime . (orthogonal group for signature ( d − 1 , 2 ) (d-1,2) )
This is analogous to how the Poincare group is the isometry group of Minkowski spacetime .
The connected component SO ( d − 1 , 2 ) SO(d-1,2) of the anti de Sitter group is isomorphic to the connected component of the conformal group of ℝ d − 2 , 1 \mathbb{R}^{d-2,1} . This is the basis of the AdS-CFT correspondence .
Properties
Exceptional isomorphisms
SO ( 6 , 2 ) ≃ SO ( 4 , ℍ ) SO(6,2) \simeq SO(4,\mathbb{H}) (where ℍ \mathbb{H} is the quaternions )
group symbol universal cover symbol higher cover symbol orthogonal group O ( n ) \mathrm{O}(n) Pin group Pin ( n ) Pin(n) Tring group Tring ( n ) Tring(n)
special orthogonal group SO ( n ) SO(n) Spin group Spin ( n ) Spin(n) String group String ( n ) String(n)
Lorentz group O ( n , 1 ) \mathrm{O}(n,1) \, Spin ( n , 1 ) Spin(n,1) \, \,
anti de Sitter group O ( n , 2 ) \mathrm{O}(n,2) \, Spin ( n , 2 ) Spin(n,2) \, \,
conformal group O ( n + 1 , t + 1 ) \mathrm{O}(n+1,t+1) \,
Narain group O ( n , n ) O(n,n)
Poincaré group ISO ( n , 1 ) ISO(n,1) Poincaré spin group ISO ^ ( n , 1 ) \widehat {ISO}(n,1) \, \,
super Poincaré group sISO ( n , 1 ) sISO(n,1) \, \, \, \,
superconformal group
geometric contextgauge group stabilizer subgroup local model space local geometry global geometry differential cohomology first order formulation of gravity differential geometry Lie group /algebraic group G G subgroup (monomorphism ) H ↪ G H \hookrightarrow G quotient (“coset space ”) G / H G/H Klein geometry Cartan geometry Cartan connection
examples Euclidean group Iso ( d ) Iso(d) rotation group O ( d ) O(d) Cartesian space ℝ d \mathbb{R}^d Euclidean geometry Riemannian geometry affine connection Euclidean gravity
Poincaré group Iso ( d − 1 , 1 ) Iso(d-1,1) Lorentz group O ( d − 1 , 1 ) O(d-1,1) Minkowski spacetime ℝ d − 1 , 1 \mathbb{R}^{d-1,1} Lorentzian geometry pseudo-Riemannian geometry spin connection Einstein gravity
anti de Sitter group O ( d − 1 , 2 ) O(d-1,2) O ( d − 1 , 1 ) O(d-1,1) anti de Sitter spacetime AdS d AdS^d AdS gravity
de Sitter group O ( d , 1 ) O(d,1) O ( d − 1 , 1 ) O(d-1,1) de Sitter spacetime dS d dS^d deSitter gravity
linear algebraic group parabolic subgroup /Borel subgroup flag variety parabolic geometry
conformal group O ( d , t + 1 ) O(d,t+1) conformal parabolic subgroup Möbius space S d , t S^{d,t} conformal geometry conformal connection conformal gravity
supergeometry super Lie group G G subgroup (monomorphism ) H ↪ G H \hookrightarrow G quotient (“coset space ”) G / H G/H super Klein geometry super Cartan geometry Cartan superconnection
examples super Poincaré group spin group super Minkowski spacetime ℝ d − 1 , 1 | N \mathbb{R}^{d-1,1\vert N} Lorentzian supergeometry supergeometry superconnection supergravity
super anti de Sitter group super anti de Sitter spacetime
higher differential geometry smooth 2-group G G 2-monomorphism H → G H \to G homotopy quotient G / / H G//H Klein 2-geometry Cartan 2-geometry
cohesive ∞-group ∞-monomorphism (i.e. any homomorphism ) H → G H \to G homotopy quotient G / / H G//H of ∞-action higher Klein geometry higher Cartan geometry higher Cartan connection
examples extended super Minkowski spacetime extended supergeometry higher supergravity : type II , heterotic , 11d
References
The anti de Sitter Lie algebra is discussed for instance in
The representation theory and its Inönü-Wigner contraction to that of the Poincaré group is discussed in
Jouko Mickelsson , J. Niederle, Contractions of Representations of de Sitter Groups , Comm. Math. Phys. Volume 27, Number 3 (1972), 167-180. (Euclid )
Mauricio Ayala, Richard Haase, Group contractions and its consequences upon representations of different spatial symmetry groups (arXiv:hep-th/0206037 )
Francisco J. Herranz, Mariano Santander, section 4 of (Anti)de Sitter/Poincare symmetries and representations from Poincare/Galilei through a classical deformation approach , J.Phys.A41:015204,2008 (arXiv:math-ph/0612059 )
Last revised on July 10, 2018 at 09:24:54.
See the history of this page for a list of all contributions to it.