Contents
Context
Topology
topology (point-set topology , point-free topology )
see also differential topology , algebraic topology , functional analysis and topological homotopy theory
Introduction
Basic concepts
open subset , closed subset , neighbourhood
topological space , locale
base for the topology , neighbourhood base
finer/coarser topology
closure , interior , boundary
separation , sobriety
continuous function , homeomorphism
uniformly continuous function
embedding
open map , closed map
sequence , net , sub-net , filter
convergence
category Top
Universal constructions
Extra stuff, structure, properties
nice topological space
metric space , metric topology , metrisable space
Kolmogorov space , Hausdorff space , regular space , normal space
sober space
compact space , proper map
sequentially compact , countably compact , locally compact , sigma-compact , paracompact , countably paracompact , strongly compact
compactly generated space
second-countable space , first-countable space
contractible space , locally contractible space
connected space , locally connected space
simply-connected space , locally simply-connected space
cell complex , CW-complex
pointed space
topological vector space , Banach space , Hilbert space
topological group
topological vector bundle , topological K-theory
topological manifold
Examples
empty space , point space
discrete space , codiscrete space
Sierpinski space
order topology , specialization topology , Scott topology
Euclidean space
cylinder , cone
sphere , ball
circle , torus , annulus , Moebius strip
polytope , polyhedron
projective space (real , complex )
classifying space
configuration space
path , loop
mapping spaces : compact-open topology , topology of uniform convergence
Zariski topology
Cantor space , Mandelbrot space
Peano curve
line with two origins , long line , Sorgenfrey line
K-topology , Dowker space
Warsaw circle , Hawaiian earring space
Basic statements
Theorems
Analysis Theorems
topological homotopy theory
Complex geometry
Contents
Idea
The projective spaces over ground ring π \mathbb{K} being the real numbers β \mathbb{R} , complex numbers β \mathbb{C} , quaternions β \mathbb{H} or octonions π \mathbb{O} admit, respectively, CW- -cell complex structure with a single cell in each dimension k k , 2 k 2 k , 4 k 4 k or 8 k 8k , respectively.
We discuss the cases π β { β , β , β } \mathbb{K} \,\in\, \{\mathbb{R}, \mathbb{C}, \mathbb{H}\} . For the case π = π \mathbb{K} \,=\, \mathbb{O} see Lackman 19, Lemma 3.4
Preliminaries
Let π β { β , β , β } \mathbb{K} \,\in\, \big\{ \mathbb{R}, \mathbb{C}, \mathbb{H} \big\} be one of the associative real normed division algebras , hence either the real numbers , or the complex numbers or the quaternions . We regard this as a topological ring with respect to the canonical underlying topology of the Euclidean space β dim β ( π ) \mathbb{R}^{ dim_{_{\mathbb{R}}}(\mathbb{K}) } .
For n β β n \in \mathbb{N} , consider
π P n β ( π n + 1 β { 0 } ) / π Γ
\mathbb{K}P^n
\;\;
\coloneqq
\;\;
\big(
\mathbb{K}^{n+1} \setminus \{0\}
\big) / \mathbb{K}^\times
the π \mathbb{K} -projective space , i.e. the topological quotient space of the complement of zero in the n + 1 n+1 -fold Cartesian product of π \mathbb{K} by the right (say) multiplication action by the group of units π Γ = π β { 0 } \mathbb{K}^\times \,=\, \mathbb{K} \setminus \{0\} .
Notice the canonical subspace inclusion
π P n βͺ π P n + 1 [ z 0 : β― : z n ] β¦ [ z 0 : β― : z n : 0 ] .
\array{
\mathbb{K}P^n
&\hookrightarrow&
\mathbb{K}P^{n+1}
\\
\big[
z_0 \,:\, \cdots \,:\, z_n
\big]
&\mapsto&
\big[
z_0 \,:\, \cdots \,:\, z_n \,:\, 0
\big]
\,.
}
with induced complement π P n + 1 β π P \mathbb{K}P^{n+1} \setminus \mathbb{K}P with topological boundary
β ( π P n + 1 β π P ) β ( π P n + 1 β π P ) Β― β ( π P n + 1 β π P ) .
\partial
\big(
\mathbb{K}P^{n+1} \setminus \mathbb{K}P
\big)
\;\;
\coloneqq
\;\;
\overline{
\big(
\mathbb{K}P^{n+1} \setminus \mathbb{K}P
\big)
}
\setminus
\big(
\mathbb{K}P^{n+1} \setminus \mathbb{K}P
\big)
\,.
Statement
Proposition
(cell structure of π \mathbb{K} -projective space)
We have a pushout diagram in in topological spaces of the form
D ( n + 1 ) β
dim β ( π ) βΆ π P n + 1 β ( po ) β S ( n + 1 ) β
dim β ( π ) β 1 βΆ π P n
\array{
D^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) }
&\longrightarrow&
\mathbb{K}P^{n+1}
\\
\big\uparrow
&{}_{^{(po)}}&
\big\uparrow
\\
S^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) - 1 }
&\longrightarrow&
\mathbb{K}P^n
}
exhibiting π P n + 1 \mathbb{K}P^{n+1} as the result of an ( n + 1 ) β
dim β ( π ) (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) -cell attachment to π P n \mathbb{K}P^{n} with attaching map the canonical projection
S ( n + 1 ) β
dim β ( π ) β 1 β ( π n + 1 β { 0 } ) / β + Γ βΆ ( π n + 1 β { 0 } ) / π Γ β π P n .
\array{
S^{(n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K})-1}
\;\simeq\;
\big(
\mathbb{K}^{n+1} \setminus \{0\}
\big) / \mathbb{R}_+^\times
&\longrightarrow&
\big(
\mathbb{K}^{n+1} \setminus \{0\}
\big) / \mathbb{K}^\times
\;\simeq\;
\mathbb{K}P^n
\,.
}
Proof
If we coordinatize the inclusion of consecutive projective spaces as
(1) π P n βͺ π P n + 1 [ z 0 : β― : z n ] β¦ [ z 0 : β― : z n : 0 ]
\array{
\mathbb{K}P^n
&\overset{\;\;\;}{\hookrightarrow}&
\mathbb{K}P^{n+1}
\\
[z_0 \colon \cdots \colon z_n ]
&\mapsto&
[z_0 \colon \cdots \colon z_n \colon 0]
}
then the complement of this inclusion inherits coordinatization as
π P n + 1 β π P n = { [ z 0 : β― : z n : z n + 1 ] | z n + 1 β 0 } β π P n + 1 .
\mathbb{K}P^{n+1}
\setminus
\mathbb{K}P^{n}
\;=\;
\big\{
\left.
[z_0 \colon \cdots \colon z_n \colon z_{n + 1}]
\,\right\vert\,
z_{n + 1} \neq 0
\big\}
\;\subset\;
\mathbb{K}P^{n+1}
\,.
In terms of these coordinates, observe the following homeomorphism :
(2) π P n + 1 β π P n βΆ β Int ( D ( n + 1 ) dim β ( π ) ) β { ( y 0 , β― , y n , ( 1 β r ) ) | r β [ 0 , 1 ) β β , | y β | 2 + ( 1 β r ) 2 = 1 } β π n + 2 [ z 0 : β― : z n : z n + 1 ] β¦ 1 | z β | ( z 0 β
z n + 1 * | z n + 1 | , β― , z n β
z n + 1 * | z n + 1 | , | z n + 1 | ) .
\array{
\mathbb{K}P^{n+1} \setminus \mathbb{K}P^n
&\overset{\;\;\;\simeq\;\;\;}{\longrightarrow}&
Int
\big(
D^{(n+1) dim_{{}_{\mathbb{R}}}(\mathbb{K})}
\big)
\,\simeq\,
\left\{
\big(
y_0, \cdots, y_n, (1-r)
\big)
\,\left\vert\,
\array{
r \in [0,1) \subset \mathbb{R}\,,
\\
\left\vert \vec y \right\vert^2 + (1-r)^2 = 1
}
\right.
\right\}
&
\subset
\mathbb{K}^{n+2}
\\
\big[
z_0
\,\colon\,
\cdots
\,\colon\,
z_n
\,\colon\,
z_{n+1}
\big]
&\mapsto&
\tfrac{1}{\left\vert \vec z\right\vert}
\Big(
z_0
\cdot
\tfrac{ z^\ast_{n+1} }{ \left\vert z_{n+1}\right\vert }
\,,\,
\cdots
\,,\,
z_n
\cdot
\tfrac{ z^\ast_{n+1} }{ \left\vert z_{n+1}\right\vert }
\,,\,
\left\vert z_{n+1}\right\vert
\Big)
\,.
}
In words this says: Given the class of a set of homogeneous coordinates with the last one non-zero, form the unique representative vector subject to the condition that:
its last coordinate is real ;
its norm is unity.
Noticing that (2) takes the topological boundary on the left to the boundary sphere as r β 1 r \to 1 on the right, we see that the inverse of this homeomorphism gives horizontal isomorphisms in a commuting square of the following form:
D ( n + 1 ) β
dim β ( π ) βΆ β π P n + 1 β π P n Β― β β S ( n + 1 ) β
dim β ( π ) β 1 βΆ β β ( π P n + 1 β π P n ) .
\array{
D^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) }
&\overset{\;\;\simeq\;\;}{\longrightarrow}&
\overline{
\mathbb{K}P^{n+1}
\setminus
\mathbb{K}P^n
}
\\
\big\uparrow
&&
\big\uparrow
\\
S^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) - 1 }
&\overset{\;\;\simeq\;\;}{\longrightarrow}&
\partial
\big(
\mathbb{K}P^{n+1}
\setminus
\mathbb{K}P^n
\big)
\,.
}
But since π P n + 1 \mathbb{K}P^{n+1} is manifestly the union of its subspace π P n \mathbb{K}P^n with the topological closure of the complement of this subspace, we have a pushout square as on the right of the following pasting diagram :
D ( n + 1 ) β
dim β ( π ) βΆ β π P n + 1 β π P n Β― βΆ π P n + 1 β β ( po ) β S ( n + 1 ) β
dim β ( π ) β 1 βΆ β β ( π P n + 1 β π P n ) βΆ π P n
\array{
D^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) }
&\overset{\;\;\simeq\;\;}{\longrightarrow}&
\overline{
\mathbb{K}P^{n+1}
\setminus
\mathbb{K}P^n
}
&\longrightarrow&
\mathbb{K}P^{n+1}
\\
\big\uparrow
&&
\big\uparrow
&{}_{^{(po)}}&
\big\uparrow
\\
S^{ (n+1)\cdot dim_{{}_{\mathbb{R}}}(\mathbb{K}) - 1 }
&\overset{\;\;\simeq\;\;}{\longrightarrow}&
\partial
\big(
\mathbb{K}P^{n+1}
\setminus
\mathbb{K}P^n
\big)
&\longrightarrow&
\mathbb{K}P^n
}
It follows that the total rectangle is a pushout (if you wish: by the pasting law , using that all commuting squares with parallel isomorphisms are pushouts).
Corollary
(CW-complex -structure on π \mathbb{K} -projective spaces )
The π \mathbb{K} -projective spaces appear in cotowers
* β π P 0 βͺ AAA π P 1 βͺ AAA π P 2 βͺ AAA β― βͺ AAA π P β
\ast \,\simeq\,
\mathbb{K}P^0
\overset{\phantom{AAA}}{\hookrightarrow}
\mathbb{K}P^1
\overset{\phantom{AAA}}{\hookrightarrow}
\mathbb{K}P^2
\overset{\phantom{AAA}}{\hookrightarrow}
\cdots
\overset{\phantom{AAA}}{\hookrightarrow}
\mathbb{K}P^\infty
which at each stage n n exhibit CW-complex -structure on π P n \mathbb{K}P^n with single cells in degree k β
dim β ( π ) k \cdot dim_{\mathbb{R}}(\mathbb{K}) .
Consequences
Fixing an orthonormal basis i , j , k β β \mathrm{i}, \mathrm{j}, \mathrm{k} \,\in\, \mathbb{H} of imaginary quaternions with i β
j = k \mathrm{i} \cdot \mathrm{j} \,=\, \mathrm{k} induces, in particular, a star-algebra inclusion of the complex numbers into the quaternions
and a direct sum decomposition of β \mathbb{H} as a β \mathbb{C} -bimodule , with right action by direct right multiplication but left action by complex conjugate left multiplication in the second variable:
Proposition
Under a decomposition β β β β β * \mathbb{H} \,\simeq\, \mathbb{C} \oplus \mathbb{C}^\ast as above, the cell structures on complex projective spaces and quaternionic projective spaces from Prop. are compatible, in that for all k β β k \in \mathbb{N} we have a pasting diagram of the form
where the top square and the total rectangle are the pushout -squares from Prop. , while in the bottom square
the bottom left vertical morphism is the canonical projection (the βtwistor fibration β for k = 1 k = 1 );
the bottom right vertical morphism is the canonical inclusion β P 2 k + 2 βͺ β P 2 k + 3 \mathbb{C}P^{2k + 2} \hookrightarrow \mathbb{C}P^{2k+3} (1) followed by that canonical projection.
In particular, it follows by the pasting law that this bottom square is also a pushout .
Proof
First, the bottom left morphism clearly has to be the claimed projection for the total left morphism to be the assumed projection.
Next, by the universal property of the top pushout , the bottom right morphism is unique once it is such as to induce the given total rectangle. So we just have to check that the total right vertical morphism factors as claimed. This is a straightforward unwinding of the construction of these morphisms in the proof of Prop. .
The following diagram means to make this evident for the case that k = 1 k = 1 :
Here the notation closely alludes to the construction inside the proof of Prop. : In particular 1 β r 1-r denotes a real number (regarded inside the complex numbers or quaternions under the chosen embedding above), using that there is always a homogeneous coordinate representative with the last entry of this form. With this understood, the maps are given by sending coordinate labels βto themselvesβ, and, if necessary, by including a last coordinate 1 β r = 0 1 - r = 0 .
References
The case of octonionic projective space :