topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
continuous metric space valued function on compact metric space is uniformly continuous
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
There are multiple different concepts of continuous maps, even in classical mathematics, depending upon which foundation one is using.
A function is called continuous if its values do not “jump” with variation of its argument , unless itself “jumps”. Roughly speaking, if , then . (This can be made into a precise definition in nonstandard analysis if care is taken about the domains of these variables.)
In order to make this precise (in standard analysis) one needs some concept of neighbourhoods of elements of and .
For instance if and carry structure of metric spaces, then one may say that is continuous if for every point and for every small open ball around its image in , there exists a sufficiently small open ball around which is still mapped by into that target open ball. This definition turns out to have more elegant formulation that needs to mention neither the points of nor the radii of open balls around points: the metric induces a concept of open subsets and is continuous precisely if preimages under of open subsets in are still open subsets in .
This then is the general definition of continuity of a function between topological spaces:
A function between topological spaces is continuous precisely if its preimages of open subsets are again open subsets.
Continuous maps are the homomorphisms between topological spaces. In other words, the collection of topological spaces forms a category, often denoted Top, whose morphisms are the continuous functions.
Further generalization of the concept of continuity exists, for instance to locales (and then to toposes) or to convergence spaces. (See also at continuous space.)
There is also a concept of continuous function in cohesive homotopy type theory, a two-tiered type theory with two types (usual types) and (cohesive types), where the continuous functions are precisely the functions between cohesive types, and the not-necessarily continuous functions are the functions between usual types.
Given a bounded or unbounded open or closed interval in the Dedekind real numbers with injection A function is continuous if the graph of defined by the function , , has an image whose shape is contractible
This definition is the formal definition that most closely adheres to the intuitive idea of a continuous function as introduced in an introductory college algebra class or textbook: as a function which could be drawn on a sheet of paper without picking the writing utensil up.
We state the definition of continuity in terms of epsilontic analysis, definition below. First recall the relevant concepts:
A metric space is
a set (the “underlying set”);
a function (the “distance function”) from the Cartesian product of the set with itself to the non-negative real numbers
such that for all :
(symmetry)
Every normed vector space becomes a metric space according to def. by setting
Let , be a metric space. Then for every element and every a positive real number, write
(epsilontic definition of continuity)
For and two metric spaces (def. ), then a function
is said to be continuous at a point if for every there exists such that
or equivalently such that
where denotes the open ball (definition ).
The function is called just continuous if it is continuous at every point .
This definition is equivalent to a more abstract one, which does not explicitly refer to points or radii anymore:
Let be a metric space (def. ). Say that
A neighbourhood of a point is a subset which contains some open ball around (def. ).
An open subset of is a subset such that for every for it also contains a neighbourhood of .
The collection of open subsets in def. constitutes a topology on the set , making it a topological space. This is called the metric topology. Stated more concisely: the open balls in a metric space constitute the basis of a topology for the metric topology.
A function between metric spaces (def. ) is continuous in the epsilontic sense of def. precisely if it has the property that its pre-images of open subsets of (in the sense of def. ) are open subsets of .
First assume that is continuous in the epsilontic sense. Then for any open subset and any point in the pre-image, we need to show that there exists a neighbourhood of in . But by assumption there exists an open ball with . Since this is true for all , by definition this means that is open in .
Conversely, assume that takes open subsets to open subsets. Then for every and an open ball around its image, we need to produce an open ball in its pre-image. But by assumption contains a neighbourhood of which by definition means that it contains such an open ball around .
A function between topological spaces is a continuous map (or is said to be continuous) if for every open subset , the preimage is an open subset .
In nonstandard analysis, this is equivalent to
A function between topological spaces is a continuous map (or is said to be continuous) if for every standard point? and every hyperpoint? , if and are adequal? (infinitely close, or in other words if is in the halo of ), then and are adequal (where is the nonstandard extension? of ). Equivalently, is continuous iff is microcontinuous?.
A function between convergence spaces is continuous if for any filter such that , it follows that , where is the filter generated by the filterbase .
A continuous map between locales is simply a frame homomorphism in the opposite direction. Equivalently (via the adjoint functor theorem), it may be defined as a homomorphism of inflattices whose left adjoint preserves finitary meets (and hence is a frame homomorphism).
Since continuity is defined in terms of preservation of property (namely preserving “openness” under preimages), it is natural to ask what other properties they preserve.
Also, when a property is not always preserved it is useful to label those maps which do preserve it for closer study.
Under a continuous function:
the preimage of an open subset is open;
the preimage of a closed subset is closed;
the image of a connected subset is again connected;
theimage of a compact subset is again compact (see at continuous images of compact spaces are compact).
The preimage of a compact set need not be compact; a continuous map for which this is true is known as a proper map.
The image of an open set need not be open; a continuous map for which this is true is said to be an open map. (Technically, an open map is any function with just this property.)
The image of an closed set need not be closed; a continuous map for which this is true is said to be an closed map. (Technically, a closed map is any function with just this property.)
A continuous map of topological spaces which is invertible as a function of sets is a homeomorphism if the inverse function is a continuous map as well.
Although these don’t make sense for arbitrary topological spaces (convergence spaces, locales, etc), they are special kinds of continuous maps in contexts such as metric spaces:
Various notions of continuous function are used in constructive mathematics. A function (say real-valued and defined on a real interval) is:
In classical mathematics, these are all equivalent when the domain is itself a closed and bounded interval, and all of them except for uniform continuity are equivalent in general. The same equivalences hold in intuitionistic mathematics, thanks to the fan theorem. But no two of these are equivalent in Russian constructivism.
In fact, assuming that is defined as the set of located Dedekind cuts, there is the following negative result by Frank Waaldijk (Waaldijk2003): Without the fan theorem, there is no notion of continuity for set-theoretic functions in constructive mathematics, spelled “kontinuity” in the following, such that all of the following desiderata are met:
The key problem is that a uniformly continuous, positive-valued function defined on might fail to be bounded below by a positive number, since the interval might fail to be compact, yet its reciprocal (if also uniformly continuous) must be bounded above.
Waaldijk’s negative result can be circumvented by dropping the insistence on points and instead working with maps between locales, toposes, or formal spaces as studied in formal topology.
Discussion in constructive mathematics:
Last revised on May 26, 2023 at 17:27:42. See the history of this page for a list of all contributions to it.