uniformly continuous map




topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory


Basic concepts

Universal constructions

Extra stuff, structure, properties


Basic statements


Analysis Theorems

topological homotopy theory

Uniformly continuous maps


Recall that a continuous map ff between spaces XX and YY has the property that ff maps nearby points to nearby points, which may be formalised by first picking one point, then considering how nearby you want the points to be, then picking another point sufficiently nearby.

The concept of uniformly continuous map ff is based on the same intuition but a different formalisation: first you pick how nearby you want the points to be, then you pick two points sufficiently nearby. This results in a stronger criterion, definable in a less general context.

Traditionally this is formalized

but the definition makes sense more generally

and in fact



(uniform continuous map between uniform spaces)

Let XX and YY be uniform spaces, each defined as a set equipped with a collection of entourages. A uniformly continuous map from XX to YY is a function between their underlying sets such that, given any entourage EE on YY, there is an entourage DD on XX such that f(a)f(a) and f(b)f(b) are EE-close in YY whenever aa and bb are DD-close in XX:

E:𝒰Y,D:𝒰X,a,b:X,a Dbf(a) Ef(b). \forall\, E\colon \mathcal{U}Y,\; \exists\, D\colon \mathcal{U}X,\; \forall\, a, b\colon X,\; a \approx_D b \;\Rightarrow\; f(a) \approx_E f(b) .

A definition may also be given in terms of uniform covers.


The definition 1 is exactly like the definition of continuous map between uniform spaces, except for the order of the quantifiers D\exists\, D and a\forall\, a.


(uniformly continuous map between quasiuniform spaces)

The definition 1 in terms of entourages extends immediately to quasiuniform spaces, in which case we may speak of quasiuniformly continuous maps since some authors use ‘uniformly continuous’ for a map which is uniformly continuous between the spaces' symmetrisations.


(antiuniformly continuous map)

An antiuniformly continuous map, is defined as a uniform map, but such that the order in which the points are compared is reversed:

E:𝒰Y,D:𝒰X,a,b:X,a Dbf(b) Ef(a). \forall\, E\colon \mathcal{U}Y,\; \exists\, D\colon \mathcal{U}X,\; \forall\, a, b\colon X,\; a \approx_D b \;\Rightarrow\; f(b) \approx_E f(a) .

Between uniform spaces viewed as symmetric quasiuniformly continuous spaces, quasiuniformly continuous maps (def. 2), antiuniformly continuous maps (def. 3), and uniformly continuous maps (def. 1) are the same.

In the particular case of metric spaces, it is common to see this definition in elementary form:


(uniformly continuous map between metric spaces)

Given metric spaces XX and YY, a uniformly continuous map from XX to YY is a function between their underlying sets such that, given any positive real number ϵ\epsilon, there is a positive number δ\delta such that the distance in YY between f(a)f(a) and f(b)f(b) is less than ϵ\epsilon whenever the distance in XX between aa and bb is less than δ\delta:

ϵ>0,δ>0,a,b:X,d X(a,b)<δd Y(a,b)<ϵ. \forall\, \epsilon \gt 0,\; \exists\, \delta \gt 0,\; \forall\, a, b\colon X,\; d_X(a, b) \lt \delta \;\Rightarrow\; d_Y(a, b) \lt \epsilon .

Again, this is exactly like the definition of continuous map between metric spaces, except for the order of the quantifiers δ\exists\, \delta and a\forall\, a.


A uniform homeomorphism is a uniformly continuous bijection whose inverse is also uniformly continuous (which is not automatic). Two (quasi)uniform spaces are uniformly homeomorphic if there exists a uniform homeomorphism between them. We may also speak of antiuniform homeomorphisms between antiuniformly homeomorphic quasiuniform spaces.


Every uniformly continuous map between uniform spaces is continuous (between the underlying topological spaces) and in fact Cauchy continuous (between the underlying Cauchy spaces). Also, every uniformly continuous or antiuniformly continuous map between quasiuniform spaces is Cauchy continuous. Conversely, every short or even Lipschitz map between metric spaces (or Lipschitz manifolds) is uniformly continuous.

A composite of uniformly continuous maps is uniformly continuous, as is any identity function between (quasi)uniform spaces. The composite of two antiuniformly continuous maps is uniformly continuous. Thus uniform spaces are the objects of a category whose morphisms are the uniformly continuous maps as morphisms, and quasiuniform spaces are the objects of two categories: one with uniformly continuous maps as morphisms and one with both uniformly continuous maps and antiuniformly continuous maps as morphisms (so that quasiuniform spaces are the objects of an \mathcal{M}-category).


Revised on June 22, 2017 03:06:20 by Urs Schreiber (