nLab finite homotopy type

Contents

Context

Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction setinternal homfunction type
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian productdependent productdependent product type
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijectionisomorphism/adjoint equivalenceequivalence of types
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Contents

Definition

Definition

A homotopy type is called finite if it is presented (via the discussion at homotopy hypothesis) by either

Remark

Similarly a spectrum (stable homotopy type) given by a sequence of finite homotopy types is called a finite spectrum.

Remark

Beware that a finite homotopy type in general does not have finite and finitely many homotopy groups (see e.g. at homotopy groups of spheres). Homotopy types with finite and finitely many homotopy groups have alternatively been called π\pi-finite, or tame, or (adapted from homological algebra) “of finite type” (which needs to be carefully distinguishes, therefore, from “finite homotopy type”). See at homotopy type with finite homotopy groups.

Properties

Relation to compact homotopy type

The compact objects in ∞Grpd are the retracts of finite homotopy types. Not every such retract is itself a finite homotopy type; the vanishing of Wall's finiteness obstruction is a necessary and sufficient condition for this to happen.

References

Last revised on July 8, 2021 at 19:36:43. See the history of this page for a list of all contributions to it.