# Contents

## Idea

The principle of interval type localization states that for all types $A$, $A$ is $\mathbb{I}$-local, or equivalently that the function

$\mathrm{const}_{A, \mathbb{I}} \equiv \lambda x:A.\lambda i:mathbb{I}.x:A \to (\mathbb{I} \to A)$

is an equivalence of types.

There is also a definitional interval type localization which says that the function

$\mathrm{const}_{A, \mathbb{I}} \equiv \lambda x:A.\lambda i:mathbb{I}.x:A \to (\mathbb{I} \to A)$

is a definitional or strict equivalence of types. The usual notion of interval type localization can be called propositional interval type localization.

One has the following analogies between localization at a specific type and the type theoretic letter rule that it proves:

localization ruletype theoretic letter rule
$\mathbb{I}$-localizationJ-rule
$S^1$-localizationK-rule

## Axiom of interval type localization

In Martin-LΓΆf type theory, interval type localization is a provable statement from the J-rule and the recursion principle of the interval type. However, in other dependent type theories where identity types are defined in terms of the interval type, interval type localization can be added as a separate axiom to the type theory as an alternative to the J-rule, because it implies the J-rule.

Suppose that one has an interval type $\mathbb{I}$, with elements $0:\mathbb{I}$ and $1:\mathbb{I}$.

$\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{I} \; \mathrm{type}}$
$\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{I}} \quad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 1:\mathbb{I}}$

Usually, the recursion principle of the interval type is interpreted as a way to construct, from elements $x:A$ and $y:A$ and identification $p:x =_A y$, paths $p:\mathbb{I} \to A$, aka functions from the interval type to $A$. Interpreted another way, the recursion principle of the interval type are the negative elimination and computation rules for identity types, allowing one to define identity types as negative types.

• The formation rule of identity types state that given a type $A$ and elements $x:A$ and $y:A$, one can form the identity type $x =_A y$. Syntactically, this is given by the following inference rules:
$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, x:A, y:A \vdash x =_A y \; \mathrm{type}}$
• The introduction rule of identity types state that given a type $A$ and a path $p:\mathbb{I} \to A$, one can construct an identification $\mathrm{toId}_A(f):f(0) =_A f(1)$. Syntactically, this is given by the following inference rules:
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash f:\mathbb{I} \to A}{\Gamma \vdash \mathrm{toId}_A(f):f(0) =_A f(1)}$

Normally, this would be function application to the canonical identification $\mathcal{p}:0 =_\mathbb{I} 1$, but here we havenβt defined $\mathcal{p}$ yet since we havenβt defined the identity type yet, and with this rule one can define said identification to be the identification of the identity function on the interval type

$\mathcal{p} \equiv \mathrm{toId}_\mathbb{I}(\mathrm{id}_\mathbb{I}):0 =_\mathbb{I} 1$

In addition, reflexivity of an element $x:A$ is given by sending the constant path of $x:A$ to its equality

$\mathrm{refl}_A(x) \equiv \mathrm{toId}_{A}(\lambda i:\mathbb{I}.x):x =_A x$
• The elimination rule of identity types state that given a type $A$, elements $x:A$ and $y:A$, and identification $p:x =_A y$, one can construct a path $\mathrm{topath}_\mathbb{I}^A(x, y, p):\mathbb{I} \to A$. Syntactically, this is given by the following inference rules:
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash x:A \quad \Gamma \vdash y:A \quad \Gamma \vdash p:x =_A y}{\Gamma \vdash \mathrm{topath}_\mathbb{I}^A(x, y, p):\mathbb{I} \to A}$

This is just another name for the recursor of the interval type $\mathrm{rec}_\mathbb{I}^A(x, y, p) \equiv \mathrm{topath}_\mathbb{I}^A(x, y, p):\mathbb{I} \to A$.

• The three computation rules of identity types state that given a type $A$, elements $x:A$ and $y:A$, and identification $p:x =_A y$,
$\mathrm{topath}_\mathbb{I}^A(x, y, p)(0) \equiv x \quad \mathrm{topath}_\mathbb{I}^A(x, y, p)(1) \equiv y \quad \mathrm{toId}_{A}(\mathrm{topath}_\mathbb{I}^A(x, y, p)) \equiv p$

Syntactically, this is given by the following inference rules:

$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash x:A \quad \Gamma \vdash y:A \quad \Gamma \vdash p:x =_A y}{\Gamma \vdash \mathrm{topath}_\mathbb{I}^A(x, y, p)(0) \equiv x:A}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash x:A \quad \Gamma \vdash y:A \quad \Gamma \vdash p:x =_A y}{\Gamma \vdash \mathrm{topath}_\mathbb{I}^A(x, y, p)(1) \equiv y:A}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash x:A \quad \Gamma \vdash y:A \quad \Gamma \vdash p:x =_A y}{\Gamma \vdash \mathrm{toId}_{A}(\mathrm{topath}_\mathbb{I}^A(x, y, p)) \equiv p:x =_A y}$
• The uniqueness rule of identity types state that given a type $A$ and a path $p:\mathbb{I} \to A$,
$\mathrm{topath}_\mathbb{I}^A(p(0), p(1), \mathrm{toId}_A(p)) \equiv p$

Syntactically, this is given by the following inference rules:

$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash f:\mathbb{I} \to A}{\Gamma \vdash \mathrm{topath}_\mathbb{I}^A(f(0), f(1), \mathrm{toId}_A(f)) \equiv f:\mathbb{I} \to A}$

Then $\mathrm{I}$-localization is given by the following axiom:

$\prod_{A:\mathrm{type}} \sum_{g:(\mathbb{I} \to A) \to A} \left(\prod_{x:A} g(\lambda i:\mathbb{I}.x) =_A x\right) \times \left(\prod_{p:\mathbb{I} \to A} \lambda i:\mathbb{I}.g(p) =_{\mathbb{I} \to A} p\right)$

While this states that $\mathrm{const}_{A, \mathbb{I}}$ is only a quasi-invertible function, it is well known that every quasi-invertible function can be made into a coherently invertible function by constructing a new section or retraction which satisfies a suitable family of naturality squares.

If the dependent type theory does not have type universes, then the axiom of $\mathrm{I}$-localization needs to be expressed as an inference rule:

$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \sum_{g:(\mathbb{I} \to A) \to A} \left(\prod_{x:A} g(\lambda i:\mathbb{I}.x) =_A x\right) \times \left(\prod_{p:\mathbb{I} \to A} \lambda i:\mathbb{I}.g(p) =_{\mathbb{I} \to A} p\right)}$

and if the dependent type theory does not have dependent sum types, then this would have to be expressed as three separate rules:

$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, p:\mathbb{I} \to A \vdash \mathrm{const}_{A, \mathrm{I}}^{-1}(p):A}$
$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, x:A \vdash \beta_{\mathbb{I} \to A}(x):\mathrm{const}_{A, \mathrm{I}}^{-1}(\lambda i:\mathbb{I}.x) =_{A} x}$
$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, p:\mathbb{I} \to A \vdash \eta_{\mathbb{I} \to A}(p):\lambda i:\mathbb{I}.\mathrm{const}_{A, \mathrm{I}}^{-1}(p) =_{\mathbb{I} \to A} p}$

Definitional $\mathrm{I}$-localization is given by the following rules:

$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, p:\mathbb{I} \to A \vdash \mathrm{const}_{A, \mathrm{I}}^{-1}(p):A}$
$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, x:A \vdash \mathrm{const}_{A, \mathrm{I}}^{-1}(\lambda i:\mathbb{I}.x) \equiv x:A}$
$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, p:\mathbb{I} \to A \vdash \lambda i:\mathbb{I}.\mathrm{const}_{A, \mathrm{I}}^{-1}(p) \equiv p:\mathbb{I} \to A}$

This makes $\mathrm{const}_{A, \mathbb{I}}$ into a strict equivalence of types, which is always a coherently invertible function.

### Interval type localization implies the J-rule

The function application to identifications can be defined without the use of path induction:

###### Theorem

Given types $A$ and $B$, a a function $f:A \to B$, elements $x:A$ and $y:A$ and an identification $p:x =_A y$, one can construct the identification $\mathrm{ap}_f(x, y, p):f(x) =_B f(y)$.

This is defined through the inference rules for identity types and function composition:

$\mathrm{ap}_f(x, y, p) \equiv \mathrm{toId}_B(f \circ \mathrm{rec}_\mathbb{I}^A(x, y, p)):f(x) =_B f(y)$

###### Theorem

Suppose that every type $A$ is definitionally $\mathbb{I}$-local.

Then path induction for function types out of the interval type holds: given any type $A$, and any type family $C(p)$ indexed by paths $p:\mathbb{I} \to A$ in $A$, and given any dependent function $t:\prod_{x:A} C(\lambda i:\mathbb{I}.x)$ which says that for all elements $x:A$, there is an element of the type defined by substituting the constant path of $x:A$ into $C$, $C(\lambda i:\mathbb{I}.x)$, one can construct a dependent function $\mathrm{ind}_{\mathbb{I} \to A}(t):\prod_{z:\mathbb{I} \to A} C(z)$ such that for all $x:A$, $\mathrm{ind}_{\mathbb{I} \to A}(t, \lambda i:\mathbb{I}.x) \equiv t(x):C(\lambda i:\mathbb{I}.x)$.

###### Proof

$\mathrm{ind}_{\mathbb{I} \to A}(t)$ is defined to be

$\mathrm{ind}_{\mathbb{I} \to A}(t) \equiv \lambda p:\mathbb{I} \to A.t(\mathrm{const}_{A, \mathrm{I}}^{-1}(p))$

and by the computation rules of path types as negative copies, one has that for all $x:A$,

$\mathrm{const}_{A, \mathrm{I}}^{-1}(\lambda i:\mathbb{I}.x) \equiv x$

and so by definition of $\mathrm{ind}_{\mathbb{I} \to A}(t)$ and the judgmental congruence rules for substitution, one has

$\mathrm{ind}_{\mathbb{I} \to A}(t, \lambda i:\mathbb{I}.x) \equiv t(\mathrm{const}_{A, \mathrm{I}}^{-1}(\lambda i:\mathbb{I}.x)) \equiv t(x)$

###### Theorem

Suppose that path induction for function types out of the interval type is true.

Then the J-rule is true: given a type $A$ and given a type family $C(x, y, p)$ indexed by $x:A$, $y:A$, and $p:x =_A y$, and a dependent function $t:\prod_{x:A} C(x, x, \mathrm{refl}_A(x))$, one can construct a dependent function

$\mathrm{ind}_{=, A}(t):\prod_{x:A} \prod_{y:A} \prod_{p:x =_A y} C(x, y, p)$

such that for all $x:A$,

$J(t, x, x, \mathrm{refl}_A(x)) \equiv t(x)$

###### Proof

By path induction on the type family $C(f(0), f(1), \mathrm{toId}_A(f))$ indexed by $f:\mathbb{I} \to A$, we can construct a dependent function

$\mathrm{ind}_{\mathbb{I} \to A}(t):\prod_{f:\mathbb{I} \to A} C(f(0), f(1), \mathrm{toId}_A(f))$

such that for all $x:A$,

$\mathrm{ind}_{\mathbb{I} \to A}(t, \lambda i:\mathbb{I}.x) \equiv t(x):C(\lambda i:\mathbb{I}.x)$

since by definition of constant function and reflexivity, one has

$(\lambda i:\mathbb{I}.x)(0) \equiv x \quad (\lambda i:\mathbb{I}.x)(1) \equiv x \quad \mathrm{ap}_{\lambda i:\mathbb{I}.x}(\mathcal{p}) \equiv \mathrm{refl}_A(x)$

We define

$J(t, x, y, p) \equiv \mathrm{ind}_{\mathbb{I} \to A}(t, \mathrm{rec}_\mathbb{I}^A(x, y, p))$

since by interval recursion one has a path $\mathrm{rec}_\mathbb{I}^A(x, y, p):\mathbb{I} \to A$ such that

$\mathrm{rec}_{\mathbb{I}}^{A}(x, y, p)(0) \equiv x \quad \mathrm{rec}_{\mathbb{I}}^{A}(x, y, p)(1) \equiv y \quad \mathrm{ap}_{\mathrm{rec}_\mathbb{I}^{A}(x, y, p)}(0, 1, \mathcal{p}) \equiv p$

Last revised on December 31, 2023 at 21:17:44. See the history of this page for a list of all contributions to it.