nLab
proper topological groupoid

Context

Topology

(, )

see also , , and

Basic concepts

  • , ,

  • ,

  • ,

  • , ,

  • ,

  • ,

  • ,

  • , , ,

Universal constructions

  • ,

  • , ,

  • fiber space,

  • ,

  • ,

  • ,

  • , ,

  • , , ,

  • ,

    , , , , , ,

  • ,

  • ,

  • ,

  • ,

  • ,

  • , ,

  • ,

Examples

  • ,

  • ,

  • , ,

    • ,
  • ,

  • ,

  • , , ,

  • ,

  • (, )

  • ,

  • : ,

    • ,
  • ,

  • , ,

  • ,

  • ,

Basic statements

Theorems

Analysis Theorems

  • ,

  • ,

  • ,

  • ,

Category theory

Concepts

Universal constructions

    • /

    • /

Theorems

Extensions

Applications

Contents

Definition

A topological groupoid X 1tsX 0X_1 \stackrel{\overset{s}{\to}}{\underset{t}{\to}} X_0 is called proper if the continuous map

(s,t):X 1X 0×X 0 (s,t):X_1 \to X_0\times X_0

is a proper map.

Properties

In particular the automorphism group of any object in a proper topological groupoid is a compact group. In this sense proper topological groupoids generalize compact groups.

Examples

A Lie groupoid is called a proper Lie groupoid if its underlying topological groupoid is proper.

An orbifold is a proper Lie groupoid which is also an étale groupoid.

Last revised on January 19, 2018 at 07:32:57. See the history of this page for a list of all contributions to it.