topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
continuous metric space valued function on compact metric space is uniformly continuous
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
A topological space is separable if it has a countable dense subset.
To be explicit, is separable if there exists an infinite sequence such that, given any point in and any neighbourhood of , we have for some .
A second-countable space is separable (and trivially it is first-countable). However, first-countability plus separability do not imply second-countability; a counterexample is with the half-open topology (see Munkres, page 192), denoted .
An arbitrary product of separable spaces need not be separable, but a product of as many as a continuum number of separable spaces is separable (with the product computed in Top); a proof of the more general Hewitt-Marczewski-Pondiczery theorem can be found here. In particular, the space of all functions under pointwise convergence is separable, but is not even first-countable (and thus not second-countable either). A first-countable space need not be separable; a simple example of that is a discrete space of uncountable cardinality.
Although an arbitrary product of separable spaces need not be separable, an arbitrary product of separable spaces does satisfy the countable chain condition (see there for more discussion). This is somewhat remarkable, since it is not necessarily true that even a finite product of spaces satisfying the countable chain condition also satisfies the countable chain condition (whether it does is independent of ZFC).
Subspaces of separable spaces need not be separable. Example: the product , also called the Sorgenfrey plane, is separable, but the subspace defined by the equation is uncountable and discrete and therefore not separable. However, open subspaces of separable spaces are separable.
Many results in analysis are easiest for separable spaces. This is particularly true if one wishes to avoid using strong forms of the axiom of choice, or to use arguments predicative over the natural numbers. For example, the Hahn-Banach theorem for separable Banach spaces can be established using only mild forms of choice, e.g., dependent choice. More precisely, it can be established in the weak subsystem of second-order arithmetic; see Brown-Simpson.
A classical fact is
Using countable choice, then:
For a metric space the following are equivalent
The second property is implied by the first: given any dense subset , form the countable system of sets . To see that this is indeed a base for the topology of , take any open set , a point and a radius such that . By separability there is some such that and therefore .
To show (2) implies (3), let be a countable base of the topology. Given any open cover of , we can form the index set of those that are contained in some . By assumption . The axiom of countable choice provides now a section of .
Finally, we prove that (3) implies (1). Consider the open covers , , … From each extract a countable subcover corresponding to collection of centers . We claim that that the union forms a dense set. Indeed, given any and the point has to be contained in some for some .
In the proof any variant of the axiom of choice is only used for the implication . On the other hand, assuming countable choice, this implication holds in every topological space. The implication holds in any topological space as well (see Example )
Similar in spirit to (1)(2) but less well-known is the following.
A metric space is separable iff every open set is a countable union of balls.
One direction is not hard: if is a countable dense subset of and is an enumeration of the rationals, then according to the proof of Theorem , the balls form a countable base ( is a second-countable space). Hence every open set is a union of a family of such balls that is at most countable.
The other direction is trickier. (This is based on a MathOverflow discussion, which for the moment we record with little adaptation.) Suppose is not separable; construct by recursion a sequence of length such that no lies in the closure of the set of its predecessors (each such set is countable and therefore not dense, so such outside its closure can be found at each stage).
Therefore, for each we may choose a rational radius such that the ball contains no predecessor . There are uncountably many , so some rational radius was used uncountably many times. The collection of for which forms another -sequence which we now use instead of the first; since all the radii are the same, this sequence has the property that each contains no other , no matter whether appears before or after in the sequence.
Provided that there uncountably many such that are non-isolated in , we can construct an open set that is not a countable union of balls. For around each such we can find a point within distance of ; put . Notice that . If is any ball contained in , then for some . Supposing we have distinct , then , so . But then from and , we have so that , a contradiction. We conclude that any ball contained in contains at most one , and so cannot be covered by countably many balls.
We are therefore left to deal with the case where there are at most countably many non-isolated . Discard these, so without loss of generality we may suppose all the are isolated points of and that for some fixed the ball contains no other . Let be this set of . For each , let be the supremum over all such that is countable. It follows that is itself countable, as is . At each stage , there is a countable set disjoint from such that for each , there exists with . By transfinite induction, we can construct a cofinal subset of such that whenever and . The set is open in , and we claim that it is not a countable union of balls. For suppose otherwise. Let be such a countable family of balls; then there is some minimal for which is uncountable, so that . By construction of , there exists . But since , we have that for some , and this contradicts our condition on .
Every second-countable topological space is separable. To see this take a countable cover and select a point in each member of the cover (using countable choice).
Axioms: axiom of choice (AC), countable choice (CC).
second-countable: there is a countable base of the topology.
metrisable: the topology is induced by a metric.
-locally discrete base: the topology of is generated by a -locally discrete base.
-locally finite base: the topology of is generated by a countably locally finite base.
Lindelöf: every open cover has a countable sub-cover.
weakly Lindelöf: every open cover has a countable subcollection the union of which is dense.
metacompact: every open cover has a point-finite open refinement.
countable chain condition: A family of pairwise disjoint open subsets is at most countable.
first-countable: every point has a countable neighborhood base
Frechet-Uryson space: the closure of a set consists precisely of all limit points of sequences in
sequential topological space: a set is closed if it contains all limit points of sequences in
countably tight: for each subset and each point there is a countable subset such that .
a second-countable space has a -locally finite base: take the the collection of singeltons of all elements of a countable cover of .
second-countable spaces are separable: use the axiom of countable choice to choose a point in each set of a countable cover.
weakly Lindelöf spaces with countably locally finite base are second countable.
separable spaces satisfy the countable chain condition: given a dense set and a family , the map assigning to the unique with is surjective.
separable spaces are weakly Lindelöf: given a countable dense subset and an open cover choose for each point of the subset an open from the cover.
Lindelöf spaces are trivially also weakly Lindelöf.
a space with a -locally finite base is first countable: obviously, every point is contained in at most countably many sets of a -locally finite base.
a first-countable space is obviously Fréchet-Urysohn.
a Fréchet-Uryson space is obviously sequential.
a sequential space is obviously countably tight.
paracompact spaces satisfying the countable chain condition are Lindelöf.
James Munkres, Topology, a first course, Prentice-Hall (1975).
D. K. Brown and S. G. Simpson, Which set existence axioms are needed to prove the separable Hahn-Banach theorem?, Annals of Pure and Applied Logic 31 (1986), pp. 123-144.
Henno Brandsma, Thread on Hewitt-Marczewski theorem, Ask a Topologist (2010) (link)
Last revised on June 2, 2022 at 01:43:43. See the history of this page for a list of all contributions to it.