category theory

# Contents

## Definition

### In set theory

Let $\mathbb{N}$ be the set of natural numbers, and let $A$ be an arbitrary set. Then sequence extensionality states that for every sequence $a:\mathbb{N} \to A$ and $b:\mathbb{N} \to A$, $a =_{\mathbb{N} \to A} b$ if and only if $a(n) =_A b(n)$ for all natural numbers $n \in \mathbb{N}$.

### In category theory

Sequence extensionality in an arithmetic pretopos states that for every morphism $a:\mathbb{N} \to A$ and $b:\mathbb{N} \to A$, $a =_{\mathbb{N} \to A} b$ if and only if $a \circ n =_{\mathbb{1} \to A} b \circ n$ for all morphisms $n:\mathbb{1} \to \mathbb{N}$.

This definition makes sense in any finitely complete category with a parameterized natural numbers object.

### In dependent type theory

In dependent type theory, sequence extensionality states that given two sequences $a:\mathbb{N} \to A$ and $b:\mathbb{N} \to A$ there is an equivalence of types between the identity type $a =_{\mathbb{N} \to A} b$ and the dependent sequence type $(n:\mathbb{N}) \to (a(n) =_{A} b(n))$:

$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:\mathbb{N} \to A, b:\mathbb{N} \to A \vdash \mathrm{seqext}(a, b):(a =_{\mathbb{N} \to A} b) \simeq (n:\mathbb{N}) \to (a(n) =_{A} b(n))}$

There is also a version of sequence extensionality for dependent sequence types called dependent sequence extensionality, which states that given two dependent sequences $a:(n:\mathbb{N}) \to A(n)$ and $b:(n:\mathbb{N}) \to A(n)$ there is an equivalence of types between the identity type $a =_{(n:\mathbb{N}) \to A(n)} b$ and the dependent sequence type $(n:\mathbb{N}) \to (a(n) =_{A(n)} b(n))$:

$\frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma,a:(n:\mathbb{N}) \to A(n), b:(n:\mathbb{N}) \to A(n) \vdash \mathrm{dseqext}(a, b):(a =_{(n:\mathbb{N}) \to A(n)} b) \simeq (n:\mathbb{N}) \to (a(n) =_{A(n)} b(n))}$

## Properties

While function extensionality implies sequence extensionality, sequence extensionality is weaker than function extensionality. However, sequence extensionality is usually more relevant in dependent type theories which are strongly predicative, which usually have dependent sequence types but do not have general dependent function types.