The special case of Dp-D(p+2)-brane bound states for D1-D3-brane bound states.
brane intersections/bound states/wrapped branes/polarized branes
D-branes and anti D-branes form bound states by tachyon condensation, thought to imply the classification of D-brane charge by K-theory
intersecting D-branes/fuzzy funnels:
Dp-D(p+6) brane bound state
For more see the references at Dp-D(p+2)-brane bound state:
As spikes/BIons in the D3-brane DBI-theory:
Curtis Callan, Juan Maldacena, Brane Dynamics From the Born-Infeld Action, Nucl. Phys. B513 (1998) 198-212 (arXiv:hep-th/9708147)
Paul Howe, Neil Lambert, Peter West, The Self-Dual String Soliton, Nucl. Phys. B515 (1998) 203-216 (arXiv:hep-th/9709014)
Gary Gibbons, Born-Infeld particles and Dirichlet p-branes, Nucl. Phys. B514: 603-639, 1998 (arXiv:hep-th/9709027)
from the M5-brane:
As fuzzy funnels (the D1-brane matrix model perspective):
Neil Constable, Robert Myers, Oyvind Tafjord, The Noncommutative Bion Core, Phys. Rev. D61 (2000) 106009 (arXiv:hep-th/9911136)
Robert Myers, Section 4 of: Nonabelian D-branes and Noncommutative Geometry, J. Math. Phys. 42: 2781-2797, 2001 (arXiv:hep-th/0106178)
Neil Constable, Neil Lambert, Calibrations, Monopoles and Fuzzy Funnels, Phys. Rev. D66 (2002) 065016 (arXiv:hep-th/0206243)
Rajsekhar Bhattacharyya, Robert de Mello Koch, Fluctuating Fuzzy Funnels, JHEP 0510 (2005) 036 (arXiv:hep-th/0508131)
Identification with Yang-Mills monopoles:
Duiliu-Emanuel Diaconescu, D-branes, Monopoles and Nahm Equations, Nucl. Phys. B503 (1997) 220-238 (arxiv:hep-th/9608163)
Jessica K. Barrett, Peter Bowcock, Using D-Strings to Describe Monopole Scattering (arxiv:hep-th/0402163)
Jessica K. Barrett, Peter Bowcock, Using D-Strings to Describe Monopole Scattering - Numerical Calculations (arxiv:hep-th/0512211)
On D1-D3 brane intersections in AdS2/CFT1:
Via T-duality from D6-D8 brane intersections:
The lift of Dp-D(p+2)-brane bound states in string theory to M2-M5-brane bound states/E-strings in M-theory, under duality between M-theory and type IIA string theory+T-duality, via generalization of Nahm's equation (this eventually motivated the BLG-model/ABJM model):
Anirban Basu, Jeffrey Harvey, The M2-M5 Brane System and a Generalized Nahm’s Equation, Nucl.Phys. B713 (2005) 136-150 (arXiv:hep-th/0412310)
Jonathan Bagger, Neil Lambert, Sunil Mukhi, Constantinos Papageorgakis, Section 2.2.1 of Multiple Membranes in M-theory, Physics Reports, Volume 527, Issue 1, 1 June 2013, Pages 1-100 (arXiv:1203.3546, doi:10.1016/j.physrep.2013.01.006)
Last revised on April 2, 2020 at 13:20:27. See the history of this page for a list of all contributions to it.