nLab Dickey Lie bracket

Contents

Context

\infty-Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Algebraic Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Contents

Idea

In Lagrangian field theory the Dickey bracket is a canonical Lie bracket on conserved currents. Under the relation between conserved currents and infinitesimal symmetries of the Lagrangian the Dickey bracket lifts the canonical Lie bracket on infinitesimal symmetries to their associated conserved currents (Noether's theorem), exhibiting a Lie algebra extension.

References

The Dickey Lie bracket on conserved currents is due to

  • Leonid Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, Vol. 12 (World Scientific 1991).

and is reviewed in

The statement that the Dickey bracket Lie algebra of currents is a central Lie algebra extension of the algebra of symmetries by de Rham cohomology of the jet bundle appears as theorem 11.2 in (Part II of)

  • Alexandre Vinogradov, The 𝒞\mathcal{C}-spectral sequence, Lagrangian formalism, and conservation laws. I. the linear theory, Journal of Mathematical Analysis and Applications 100, 1-40 (1984) (doi90071-4))

  • Alexandre Vinogradov, The 𝒞\mathcal{C}-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, Journal of Mathematical Analysis and Applications 100, Issue 1, 30 April 1984, Pages 41-129 (publisher)

and is stated as exercise 2.28 on p. 203 of

  • Alexandre Vinogradov, Joseph Krasil'shchik (eds.), Symmetries and conservation laws for differential equations of mathematical physics, vol. 182 of Translations of Mathematical Monographs, AMS (1999)

A lift of the Dickey Lie bracket on cohomologically trivial spaces to an equivalent L-infinity equivalent L-infinity bracket is constructed, under some assumptions, in

The cohomologically non-trivial lift is discussed in

Created on January 2, 2018 at 17:11:26. See the history of this page for a list of all contributions to it.