nLab area enclosed by a circle

Contents

Context

Analysis

Geometry

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Variational calculus

Contents

Idea

The area enclosed by a circle as discussed in Euclidean geometry.

Definition/proposition and proofs

Strictly speaking, we are talking about the area of the disk whose boundary is the circle; however, the average person usually identifies the interior of a geometric shape with its boundary.

Proposition

Depending on which circle constant you use, given a radius rr of a circle 𝒞\mathcal{C} in the Euclidean plane 2\mathbb{R}^2, the area of a circle is expressed either as A(r)=12τr 2A(r) = \frac{1}{2} \tau r^2 or as A(r)=πr 2A(r) = \pi r^2.

Proof by double integration

Proof

In this proof, we are using the circle constant τ=2π\tau = 2 \pi.

Given any Euclidean plane 2\mathbb{R}^2, one could select an orthonormal basis on 2\mathbb{R}^2 by postulating an origin 00 at the center of the circle 𝒞\mathcal{C} and two orthonormal vectors i^\hat{i} and j^\hat{j}. The circle 𝒞\mathcal{C} could be parameterized by a function r:[0,τ]×[0,r] 2\overrightarrow{r}:[0, \tau] \times [0, r] \to \mathbb{R}^2 defined as

r(ρ,θ)ρcos(θ)i^+ρsin(θ)j^\overrightarrow{r}(\rho, \theta) \coloneqq \rho \cos(\theta) \hat{i} + \rho \sin(\theta) \hat{j}

Then the area of 𝒞\mathcal{C} is given by the following double integral?:

A(r)= 0 r 0 τ|r(ρ,θ)|dθdρA(r) = \int_{0}^{r} \int_{0}^{\tau} \vert \overrightarrow{r}(\rho, \theta) \vert d \theta d \rho

which evaluates to

A(r)= 0 r 0 τ|ρcos(θ)i^+ρsin(θ)j^|dθdρ= 0 r 0 τρ((cos(θ)) 2+(sin(θ)) 2)dθdρ= 0 r 0 τρdθdρ= 0 rτρdρ=12τrA(r) = \int_{0}^{r} \int_{0}^{\tau} \vert \rho \cos(\theta) \hat{i} + \rho \sin(\theta) \hat{j} \vert d \theta d \rho = \int_{0}^{r} \int_{0}^{\tau} \rho((\cos(\theta))^2 + (\sin(\theta))^2) d \theta d \rho = \int_{0}^{r} \int_{0}^{\tau} \rho d \theta d \rho = \int_{0}^{r} \tau \rho d \rho = \frac{1}{2} \tau r

Proof by areal velocity

Proof

In this proof, we are using the circle constant τ=2π\tau = 2 \pi.

Given any Euclidean plane 2\mathbb{R}^2, one could select an orthonormal basis on 2\mathbb{R}^2 by postulating an origin 00 at the center of the circle 𝒞\mathcal{C} and two orthonormal vectors i^\hat{i} and j^\hat{j}. There is an geometric algebra 𝔾 2\mathbb{G}^2 on the vector space defined by the equations i^ 2=1\hat{i}^2 = 1, j^ 2=1\hat{j}^2 = 1, and i^j^=j^i^\hat{i} \hat{j} = -\hat{j} \hat{i}.

The circle 𝒞\mathcal{C} could be parameterized by a function r:[0,τ] 2\overrightarrow{r}:[0, \tau] \to \mathbb{R}^2 defined as

r(θ)rcos(θ)i^+rsin(θ)j^\overrightarrow{r}(\theta) \coloneqq r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j}

Then the area of 𝒞\mathcal{C} is given by integrating the magnitude of the areal velocity:

A(r)= 0 τ|r(θ)v(θ)2|dθA(r) = \int_{0}^{\tau} \left|\frac{\overrightarrow{r}(\theta) \wedge \overrightarrow{v}(\theta)}{2}\right| d \theta

where aba \wedge b is the wedge product of two multivectors aa and bb and v\overrightarrow{v} is the velocity of a point in 𝒞\mathcal{C}. This expression evaluates to

A(r)= 0 τ|(rcos(θ)i^+rsin(θ)j^) θ(rcos(θ)i^+rsin(θ)j^)2|dθA(r) = \int_{0}^{\tau} \left|\frac{(r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j}) \wedge \partial_\theta (r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j})}{2}\right| d \theta
A(r)= 0 τ|(rcos(θ)i^+rsin(θ)j^)(rsin(θ)i^+rcos(θ)j^)2|dθA(r) = \int_{0}^{\tau} \left|\frac{(r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j}) \wedge (-r \sin(\theta) \hat{i} + r \cos(\theta) \hat{j})}{2}\right| d \theta
A(r)= 0 τ|(r(cos(θ)) 2i^j^+r(sin(θ)) 2i^j^)2|dθA(r) = \int_{0}^{\tau} \left|\frac{(r (\cos(\theta))^2 \hat{i} \hat{j} + r (\sin(\theta))^2 \hat{i} \hat{j})}{2}\right| d \theta
A(r)= 0 τ|ri^j^2|dθ= 0 τr2dθ=12τrA(r) = \int_{0}^{\tau} \left|\frac{r \hat{i} \hat{j}}{2}\right| d \theta = \int_{0}^{\tau} \frac{r}{2} d \theta = \frac{1}{2} \tau r

Proof by action functionals

Proof

In this proof, we are using the circle constant τ=2π\tau = 2 \pi.

Given any Euclidean plane 2\mathbb{R}^2, one could select an orthonormal basis on 2\mathbb{R}^2 by postulating an origin 00 at the center of the circle 𝒞\mathcal{C} and two orthonormal vectors i^\hat{i} and j^\hat{j}. The circle 𝒞\mathcal{C} could be parameterized by a function r:[0,τ] 2\overrightarrow{r}:[0, \tau] \to \mathbb{R}^2 defined as

r(θ)rcos(θ)i^+rsin(θ)j^\overrightarrow{r}(\theta) \coloneqq r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j}

Then the area of 𝒞\mathcal{C} is given by the action functional of the parameterized curve:

A(r)=12 0 τ|r(θ)| 2dθA(r) = \frac{1}{2} \int_{0}^{\tau} {\vert \overrightarrow{r}(\theta) \vert}^2 d \theta

which evaluates to

A(r)=12 0 τ|rcos(θ)i^+rsin(θ)j^| 2dθ=12 0 τ(r((cos(θ)) 2+(sin(θ)) 2)) 2dθ=12 0 τr 2dθ=12τrA(r) = \frac{1}{2} \int_{0}^{\tau} {\vert r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j} \vert}^2 d \theta = \frac{1}{2} \int_{0}^{\tau} (r((\cos(\theta))^2 + (\sin(\theta))^2))^2 d \theta = \frac{1}{2} \int_{0}^{\tau} r^2 d \theta = \frac{1}{2} \tau r

Proof by limits of regular polygons

Proof

In this proof, we are using the circle constant τ=2π\tau = 2 \pi.

The area of a regular polygon 𝒫 n\mathcal{P}_n with nn sides and circumradius rr is given by the sequence of functions P:()P:\mathbb{N} \to (\mathbb{R} \to \mathbb{R})

A 𝒫(n)(r)=12r 2(2n)sin(τ2n)A_\mathcal{P}(n)(r) = \frac{1}{2} r^2 (2 n) \sin\left(\frac{\tau}{2 n}\right)

which embeds in the +\mathbb{R}_+-action A 𝒫 : +()A_\mathcal{P}^\prime:\mathbb{R}_+ \to (\mathbb{R} \to \mathbb{R}), defined as

A 𝒫 (n)(r)=12r 2(2n)sin(τ2n)A_\mathcal{P}^\prime(n)(r) = \frac{1}{2} r^2 (2 n) \sin\left(\frac{\tau}{2n}\right)

The limit of A 𝒫 A_\mathcal{P}^\prime as nn goes to infinity is the area of a circle with radius rr:

A(r)=lim nA 𝒫 (n)(r)=lim n12r 2(2n)sin(τn)=12r 2lim m0sin(τm)m=12r 2lim m0 msin(τm) mm=12r 2lim m0τcos(τm)1=12τr 2A(r) = \lim_{n \to \infty} A_\mathcal{P}^\prime(n)(r) = \lim_{n \to \infty} \frac{1}{2} r^2 (2 n) \sin\left(\frac{\tau}{n}\right) = \frac{1}{2} r^2 \lim_{m \to 0} \frac{\sin(\tau m)}{m} = \frac{1}{2} r^2 \lim_{m \to 0} \frac{\partial_m \sin(\tau m)}{\partial_m m} = \frac{1}{2} r^2 \lim_{m \to 0} \frac{\tau \cos(\tau m)}{1} = \frac{1}{2} \tau r^2

See also

Last revised on May 17, 2022 at 15:40:31. See the history of this page for a list of all contributions to it.