nLab integer Heisenberg group

Redirected from "discrete Heisenberg groups".

Contents

Idea

The integer Heisenberg groups or discrete Heisenberg groups are non-abelian discrete central extensions of the integer product groups 2g\mathbb{Z}^{2g}, gg \in \mathbb{N}, analogous to how the ordinary Heisenberg groups are non-abelian central extensions of 2g\mathbb{R}^{2g}. Generally there are analogous RR-Heisenberg groups for any commutative ring RR.

In fact, for even multiples of the basic such extension, integer Heisenberg groups are discrete subgroups of ordinary \mathbb{R}-Heisenberg groups covering a lattice inclusion 2g 2g\mathbb{Z}^{2g} \hookrightarrow \mathbb{R}^{2g} (cf. Prop. below).

In physics, specifically in quantum field theory, these even-weight integer Heisenberg groups are closely related to quantum abelian Chern-Simons theory (spelled out below, following SS25, see also at 2-Cohomotopy moduli of surfaces).

Definition

Integer Heisenberg group extensions of 2\mathbb{Z}^2

We discuss the restriction of the basic \mathbb{R}-Heisenberg group H 3H_3 (see there) along the inclusion 2 2\mathbb{Z}^2 \hookrightarrow \mathbb{R}^2 and the mod-nn quotient groups of that.

In the following, we denote cyclic groups, for nn \in \mathbb{N}, uniformly by

n{ | n=0 /(n) | otherwise. \mathbb{Z}_{n} \;\coloneqq\; \left\{ \begin{array}{lcl} \mathbb{Z} &\vert& n = 0 \\ \mathbb{Z}/(n) &\vert& \text{otherwise} \mathrlap{\,.} \end{array} \right.

Recall (see there) the equivalence of central extensions of a discrete group GG by an abelian group AA (for the present case equipped with the trivial GG-action) with the degree=2 group cohomology H 2(G;A)H^2(G;A).

Proposition

For nn \in \mathbb{N}, the central group extensions of 2\mathbb{Z}^2 by n\mathbb{Z}_n are all integral multiples of the following elementary Heisenberg extension:

(1){(a,b,[n])×× 2|k|, (a,b,[n])(a,b,[n])=(a+a,b+b,[n+n+ab])}. \left\{ \begin{array}{l} \big(a,b,[n]\big) \,\in\, \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2\vert k \vert} \,, \\ \big( a,b,[n] \big) \cdot \big( a',b',[n'] \big) \;=\; \big( a + a', b+ b', [ n + n' + {\color{red} a \, b' } ] \big) \end{array} \right\} \,.

Proof

The central extensions in question

1 ncntrlH 21 1 \to \mathbb{Z}_n \xrightarrow{cntrl} H \longrightarrow \mathbb{Z}^2 \to 1

are classified by the degree=2 group cohomology of 2\mathbb{Z}^2 with coefficients in n\mathbb{Z}_n (equipped with the trivial 2\mathbb{Z}^2-action).

That second group cohomology is:

(2)H Grp 2( 2; n) H 2(B 2; n) H 2(T 2; n) H 2(S a 1S b 1S 2; n) H 2(S 2; n) n, \begin{array}{ccl} H^2_{Grp}(\mathbb{Z}^2;\, \mathbb{Z}_n) &\simeq& H^2(B \mathbb{Z}^2;\, \mathbb{Z}_n) \\ &\simeq& H^2(T^2;\, \mathbb{Z}_n) \\ &\simeq& H^2(S^1_a \vee S^1_b \vee S^2;\, \mathbb{Z}_n) \\ &\simeq& H^2(S^2;\, \mathbb{Z}_n) \\ &\simeq& \mathbb{Z}_n \mathrlap{\,,} \end{array}

where we used, in order of the appearance:

  1. that group cohomology is ordinary cohomology of the domain group’s classifying space;

  2. that the classifying space of the integers is the circle and that this respects Cartesian products;

  3. that the stable homotopy type of the 2-torus is the wedge sum of two circles with a 2-sphere (see there).

The generator of this cohomology group must be the group 2-cocycle

αH Grp 2( 2; n) \alpha \,\in\, H^2_{Grp}\big( \mathbb{Z}^2 ;\, \mathbb{Z}_n \big)

given by

(3) 2× 2 α n ((a,b),(a,b)) [ab], \begin{array}{ccc} \mathbb{Z}^2 \times \mathbb{Z}^2 &\xrightarrow{\; \alpha \;}& \mathbb{Z}_{n} \\ \big( (a,b), (a',b') \big) &\mapsto& [a b'] \mathrlap{\,,} \end{array}

whose cocycle condition [ab]+[(a+a)b]=[a(b+b)]+[ab] [a b'] + [(a+a')b''] = [a(b'+b'')] + [a' b''] is evidently satisfied due to the distributive law in the ring \mathbb{Z} and which is clearly not divisible.

Example

In the integer Heisenberg group (1)

  • the inverse elements are given by

    (a,b,[n]) 1=(a,b,[n+ab]) \big(a ,\, b ,\, [n]\big)^{-1} \;=\; \big( -a ,\, -b ,\, [-n + a b] \big)
  • the basic group commutators give

    (4)[(1,0,0),(0,1,0)] (1,0,0)(0,1,0)(1,0,0) 1(0,1,0) 1 = (1,1,1)(1,0,0)(0,1,0) = (0,1,1)(0,1,0) = (0,0,1). \begin{array}{ccl} \big[ (1,0,0), (0,1,0) \big] &\equiv& (1,0,0) \cdot (0,1,0) \cdot (1,0,0)^{-1} \cdot (0,1,0)^{-1} \\ &=& (1,1,1) \cdot (-1,0,0) \cdot (0,-1,0) \\ &=& (0,1,1) \cdot (0,-1,0) \\ &=& (0,0,1) \mathrlap{\,.} \end{array}

Of particular interest is the second multiple of this basic extension:

Proposition

Twice the basic integer Heisenberg extension (3) at n=2kn = 2k is isomorphic to

(5){(a,b,[n])×× 2|k|, (a,b,[n])(a,b,[n])=(a+a,b+b,[n+n+abab])}. \left\{ \begin{array}{l} \big(a, b, [n]\big) \,\in\, \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2\vert k\vert} \,, \\ \big( a, b, [n] \big) \cdot \big( a', b', [n'] \big) \;=\; \big( a + a' ,\, b + b' ,\, [n + n' + {\color{red} a \cdot b' - a' \cdot b}] \big) \end{array} \right\} \mathrlap{\,.}

Proof

It is sufficient to see that the second red summand in (5) is a group 2-cocycle cohomologous to the first red summand, which means equivalently that the 2-cocycle

((a,b),(a,b))ab+ab \big( (a, b), (a', b') \big) \;\mapsto\; a \cdot b' + a' \cdot b

has a coboundary: This coboundary is readily found to be

(a,b)ab, (a, b) \;\mapsto\; - a \cdot b \,,

since

abab+(a+a)(b+b)=ab+ab. - a \cdot b - a' \cdot b' \,+\, (a + a') \cdot (b + b') \;=\; a \cdot b' + a' \cdot b \,.

Properties

Basic properties

Proposition

The multiple=2 discrete Heisenberg group 2|k| 2^ 2\mathbb{Z}_{2{\vert k \vert}} \to \widehat{\mathbb{Z}^{2}} \to \mathbb{Z}^2 (5) is the following quotient group of the product group F(a,b)× 2|k|F(a,b) \times \mathbb{Z}_{2{\vert k \vert}} with the free group F(a,b)F(a,b) on two generators:

(6) 2^(F(a,b)× 2|k|)/(ab=[2]ba). \widehat{\mathbb{Z}^2} \,\simeq\, \big( F(a,b) \times \mathbb{Z}_{2 {\vert k \vert}} \big) \big/ \big( a \cdot b = [2] \cdot b \cdot a \big) \,.

Proof

The map

F(a,b)× 2|k|ab=[2]ba 2^ [a] (1,0,0) [b] (0,1,0) [n] (0,0,[n]) \begin{array}{ccc} \frac{ F(a,b) \times \mathbb{Z}_{2 {\vert k \vert}} }{ a \cdot b = [2] \cdot b \cdot a } &\xrightarrow{\;}& \widehat{\mathbb{Z}^2} \\ [a] &\mapsto& (1,0,0) \\ [b] &\mapsto& (0,1,0) \\ [n] &\mapsto& (0,0,[n]) \end{array}

is clearly a bijection on underlying sets, and is a group homomorphism since the quotient relation (6) is respected in 2^\widehat{\mathbb{Z}^2}, by (4).

(cf. also arXiv:2203.08030, p 21)

Linear representations

Example

For kk \in \mathbb{Z}, the non-trivial irrep of twice the 2|k|\mathbb{Z}_{2 {\left\vert k \right\vert}}-Heisenberg extension of 2\mathbb{Z}^2 (5)

(7) 2^ W Aut( 1) \begin{array}{ccc} \widehat{\mathbb{Z}^2} & \xrightarrow{\; W \;} & \mathrm{Aut}\big( \mathscr{H}_1 \big) \end{array}

is, up to isomorphism, given by:

1[ 2|k|] \mathscr{H}_1 \;\coloneqq\; \mathbb{C}\big[\mathbb{Z}_{2{\vert k \vert}}\big]
W a W(1,0,0) : |[n] e 2πink|[n] W b W(0,1,0) : |[n] |[n+1] ζ W(0,0,1) : |[n] e πi1k|[n]. \begin{array}{ccccccl} W_a & \coloneqq & W(1,0,0) &\colon& {\big\vert [n] \big\rangle} &\mapsto& e^{2 \pi \mathrm{i} \tfrac{n}{k}} {\big\vert [n] \big\rangle} \\ W_b &\coloneqq& W(0,1,0) &\colon& {\big\vert [n] \big\rangle} &\mapsto& {\big\vert [n + 1] \big\rangle} \\ \zeta &\coloneqq& W(0,0,1) &\colon& {\big\vert [n] \big\rangle} &\mapsto& e^{\pi \mathrm{i} \tfrac{1}{k}} {\big\vert [n] \big\rangle} \mathrlap{\,.} \end{array}

For instance:

(8)W aW bζ 1=W(1,1,0)=W bW aζ +1. W_a \cdot W_b \cdot \zeta^{-1} \;=\; W(1,1,0) \;=\; W_b \cdot W_a \cdot \zeta^{+1} \,.

Proof

To see that this is a linear representation, by (6) is it sufficient to check that the basic group commutator is represented, in that

(9)W aW b=e 2πi1kW b, W_a \cdot W_b \,=\, e^{ 2 \pi \mathrm{i} \tfrac{1}{k} } \, W_b \cdot \mathrlap{\,,}

which is evidently the case, since

W aW b|[n] = W a|[n+1] = e 2πin+1k|[n+1], \begin{array}{ccl} W_a \cdot W_b {\big\vert [n] \big\rangle} &=& W_a \cdot {\big\vert [n+1] \big\rangle} \\ &=& e^{2 \pi \mathrm{i} \tfrac{n{\color{red}+1}}{k}} \, {\big\vert [n+1] \big\rangle} \mathrlap{\,,} \end{array}

while

W bW a|[n] = e 2πinkW b|[n] = e 2πink|[n+1]. \begin{array}{ccl} W_b \cdot W_a {\big\vert [n] \big\rangle} &=& e^{2 \pi \mathrm{i} \tfrac{n}{k}} \, W_b {\big\vert [n] \big\rangle} \\ &=& e^{2 \pi \mathrm{i} \tfrac{n}{k}} \, {\big\vert [n + 1] \big\rangle} \mathrlap{\,.} \end{array}

To see that this is irreducible just note that a linear basis of the underlying vector space is obtained by successively acting with W bW_b on, say |[1]{\big\vert [1] \big\rangle}.

For more see Floratos & Tsohantjis 2022.

Modular automorphisms

Remark

(relation to quantum states and quantum observables of abelian Chern-Simons theory)
The complex dimension of the irrep 1\mathscr{H}_1 (7) is that expected for the space of quantum states of abelian Chern-Simons theory on a 2-torus (cf. Manoliu 1998a p 40)

dim( 1)=k, dim(\mathscr{H}_1) \;=\; k \,,

and the group commutator-relation (9)

W aW b=e 2πi1kW bW a W_a \cdot W_b = e^{2\pi \mathrm{i}\tfrac{1}{k}} \, W_b \cdot W_a

of linear operators acting on this irrep (7) reflects the characteristic commutator-relation of Wilson loop-quantum observables in abelian Chern-Simons theory on a 2-torus (cf. Tong 2016 (5.28), p 166).

Moreover, the integer Heisenberg group knows about the modular group acting on this space of quantum states, hence about the “modular functor” of abelian Chern-Simons theory:

Definition

(modular action on the integer Heisenberg group)
Since the colored summand in (5) is the canonical symplectic form on 2\mathbb{Z}^2, the integer symplectic group in dimension 2, hence the modular group

{gGL 2()|(g 11a+g 12b)(g 21a+g 22b)(g 11a+g 12b)(g 21a+g 22b)det(g)(abab)=abab}SL 2(), \Big\{ g \in \mathrm{GL}_2(\mathbb{Z}) \,\Big\vert\, \underset{ \mathrm{det}(g) \cdot (a b' - a' b) }{ \underbrace{ (g_{1 1} a + g_{12} b) (g_{2 1} a' + g_{22} b') - (g_{11} a' + g_{12}b') (g_{21} a + g_{22} b) } } = a b' - a'b \Big\} \;\simeq\; \mathrm{SL}_2(\mathbb{Z}) \,,

acts by evident group automorphism on (5):

(10)SL 2()× 2^ 2^ (g,(a,b,[n])) (g 11a+g 12b,g 21a+g 22b,[n]). \begin{array}{ccc} \mathrm{SL}_2(\mathbb{Z}) \times \widehat{\mathbb{Z}^2} &\xrightarrow{}& \widehat{\mathbb{Z}^2} \\ \Big( g, \big(a,b,[n]\big) \Big) &\mapsto& \Big( g_{11}a + g_{12}b ,\, g_{21}a + g_{22}b ,\, [n] \Big) \mathrlap{\,.} \end{array}

Remark

Recall that the modular group SL 2()GL 2()SL_2(\mathbb{Z}) \subset GL_2(\mathbb{Z}) is the subgroup of the general linear group generated by the two elements

(11)S[0 1 1 0]andT[1 1 0 1]. S \;\coloneqq\; \left[ \begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array} \right] \;\;\;\;\; \text{and} \;\;\;\;\; T \;\coloneqq\; \left[ \begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array} \right] \mathrlap{\,.}

Proposition

There exists a linear representation

SL 2()× 1 1, \begin{array}{ccc} \mathrm{SL}_2(\mathbb{Z}) \times \mathscr{H}_1 &\xrightarrow{\;}& \mathscr{H}_1 \mathrlap{\,,} \end{array}

of the modular group on the underlying complex vector space of (7), which intertwines the action (7) of 2^\widehat{\mathbb{Z}^2} on 1\mathscr{H}_1, with its automorphic images under the modular gorup action (10) on the Heisenberg group, in that:

m(W)m(|[n])=m(W|[n]),{m SL 2() W 2^ |[n] 1. m(W) \cdot m\Big( {\big\vert [n] \big\rangle} \Big) \;=\; m\Big( W \cdot {\big\vert [n] \big\rangle} \Big) \,, \;\;\;\;\; \forall \left\{ \begin{array}{ccc} m &\in& SL_2(\mathbb{Z}) \\ W &\in& \widehat{\mathbb{Z}^2} \\ {\left\vert [n] \right\rangle} &\in& \mathscr{H}_1 \mathrlap{\,.} \end{array} \right.

This representation is just the modular action known from abelian Chern-Simons theory at level kk (cf. Manoliu 1998a p 67):

S(|[n]) = 1|k| [n^]e 2πin^nk|[n^] T(|[n]) = e πin 2k|[n] \begin{array}{ccr} S\Big( {\big\vert [n] \big\rangle} \Big) &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ T\Big( {\big\vert [n] \big\rangle} \Big) &=& e^{ \pi \mathrm{i} \tfrac{ n^2 }{ k } } {\big\vert [ n ] \big\rangle} \end{array}

Proof

By unwinding the definitions and direct computation we find that the statement holds for m=S,Tm = S,T any one of the modular generators (11):

S(W a)S(|[n]) W b 11|k| [n^]e 2πin^nk|[n^] = 1|k| [n^]e 2πi(n^+1)nk|[n^] = e 2πinkS(|[n]) = S(W a|[n]), \begin{array}{ccl} S(W_a) \cdot S\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_b^{-1} \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ (\widehat{n} + 1) \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& e^{ 2 \pi \mathrm{i} \tfrac{n}{k} } \, S\Big( {\big\vert [n] \big\rangle} \Big) \\ &=& S\Big( W_a {\big\vert [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}
S(W b)S(|[n]) W a1|k| [n^]e 2πin^nk|[n^] = 1|k| [n^]e 2πinke 2πin^nk|[n^] = S(W a|[n]), \begin{array}{ccl} S(W_b) \cdot S\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_a \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{2 \pi \mathrm{i} \tfrac{n}{k}} e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& S\Big( W_a {\big| [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}
T(W a)T(|[n]) W ae iπn 2k|[n] = e 2πinke iπn 2k|[n] = T(W a|[n]), \begin{array}{ccl} T(W_a) \cdot T\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_a \, e^{ \mathrm{i} \pi \tfrac{n^2}{k} } {\big\vert [n] \big\rangle} \\ &=& e^{2 \pi \mathrm{i} \tfrac{n}{k}} e^{ \mathrm{i} \pi \tfrac{n^2}{k} } {\big\vert [n] \big\rangle} \\ &=& T\Big( W_a \, {\big\vert [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}

and finally, using (8):

T(W b)T(|[n]) W bW ae 2πi1ke πin 2k|[n] = e πin 2+2n+1k|[n+1] = e πi(n+1) 2k|[n+1] = T(W b|[n]). \begin{array}{ccl} T(W_b)\cdot T\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_b \, W_a \, e^{2\pi \mathrm{i} \tfrac{1}{k}} \, e^{\pi \mathrm{i} \tfrac{n^2}{k}} {\big\vert [n] \big\rangle} \\ &=& e^{\pi \mathrm{i} \tfrac{ n^2 + 2n + 1 }{k}} {\big\vert [n + 1] \big\rangle} \\ &=& e^{\pi \mathrm{i} \tfrac{ (n+1)^2 }{k}} {\big\vert [n + 1] \big\rangle} \\ &=& T\Big( W_b {\big\vert [n] \big\rangle} \Big) \mathrlap{\,.} \end{array}

But since S,TSL 2()S , T \in SL_2(\mathbb{Z}) generate the whole group (Rem. ), this completes the proof.


Literature

Generally on the integer/discrete Heisenberg \mathbb{Z}-extensions of 2g\mathbb{Z}^{2g}:

On (invertibility in) the group algebra:

  • Martin Göll, Klaus Schmidt, Evgeny Verbitskiy: A Wiener Lemma for the discrete Heisenberg group: Invertibility criteria and applications to algebraic dynamics, Monatsh Math 180 (2016) 485–525 [doi:10.1007/s00605-016-0894-0, arXiv:1603.08225]

On their representation theory with an eye towards quantum information theory:

  • E. Floratos, I. Tsohantjis: Complete set of unitary irreps of Discrete Heisenberg Group HW 2 sH W_{2^s} [arXiv:2210.04263]

On the automorphism group:

In relation to U(1)U(1)-current algebra (WZW-model):

The above discussion of irreps and modular automorphisms related to abelian Chern-Simons theory follows:

Last revised on January 5, 2025 at 11:04:12. See the history of this page for a list of all contributions to it.