nLab integer Heisenberg group

Contents

1. Idea

The integer Heisenberg groups or discrete Heisenberg groups are non-abelian discrete central extensions of the integer product groups 2g\mathbb{Z}^{2g}, gg \in \mathbb{N}, analogous to how the ordinary Heisenberg groups are non-abelian central extensions of 2g\mathbb{R}^{2g}. Generally there are analogous RR-Heisenberg groups for any commutative ring RR.

In fact, for even multiples of the basic such extension, integer Heisenberg groups are discrete subgroups of ordinary \mathbb{R}-Heisenberg groups covering a lattice inclusion 2g 2g\mathbb{Z}^{2g} \hookrightarrow \mathbb{R}^{2g} (cf. Prop. 2.4 below).

In physics, specifically in quantum field theory, these even-weight integer Heisenberg groups are closely related to quantum abelian Chern-Simons theory (spelled out below, following SS25, see also at 2-Cohomotopy moduli of surfaces).

2. Definition

Integer Heisenberg group extensions of 2\mathbb{Z}^2

We discuss the restriction of the basic \mathbb{R}-Heisenberg group H 3H_3 (see there) along the inclusion 2 2\mathbb{Z}^2 \hookrightarrow \mathbb{R}^2 and the mod-nn quotient groups of that.

In the following, we denote cyclic groups, for nn \in \mathbb{N}, uniformly by

k{ | k=0 /(k) | otherwise. \mathbb{Z}_{k} \;\coloneqq\; \left\{ \begin{array}{lcl} \mathbb{Z} &\vert& k = 0 \\ \mathbb{Z}/(k) &\vert& \text{otherwise} \mathrlap{\,.} \end{array} \right.

Recall (see there) the equivalence of central extensions of a discrete group GG by an abelian group AA (for the present case equipped with the trivial GG-action) with the degree=2 group cohomology H 2(G;A)H^2(G;A).

Proposition 2.1. For kk \in \mathbb{N}, the central group extensions of 2\mathbb{Z}^2 by k\mathbb{Z}_k are all integral multiples of the following elementary Heisenberg extension:

(1){(a,b,[n])×× k, (a,b,[n])(a,b,[n])=(a+a,b+b,[n+n+ab])}. \left\{ \begin{array}{l} \big(a,b,[n]\big) \,\in\, \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{k} \,, \\ \big( a,b,[n] \big) \cdot \big( a',b',[n'] \big) \;=\; \big( a + a', b + b', [ n + n' + {\color{red} a \, b' } ] \big) \end{array} \right\} \,.

Proof. The central extensions in question

1 kcntrlH 21 1 \to \mathbb{Z}_k \xrightarrow{cntrl} H \longrightarrow \mathbb{Z}^2 \to 1

are classified by the degree=2 group cohomology of 2\mathbb{Z}^2 with coefficients in k\mathbb{Z}_k (equipped with the trivial 2\mathbb{Z}^2-action).

That second group cohomology is:

(2)H Grp 2( 2; k) H 2(B 2; k) H 2(T 2; k) H 2(S a 1S b 1S 2; k) H 2(S 2; k) k, \begin{array}{ccl} H^2_{Grp}(\mathbb{Z}^2;\, \mathbb{Z}_k) &\simeq& H^2(B \mathbb{Z}^2;\, \mathbb{Z}_k) \\ &\simeq& H^2(T^2;\, \mathbb{Z}_k) \\ &\simeq& H^2(S^1_a \vee S^1_b \vee S^2;\, \mathbb{Z}_k) \\ &\simeq& H^2(S^2;\, \mathbb{Z}_k) \\ &\simeq& \mathbb{Z}_k \mathrlap{\,,} \end{array}

where we used, in order of the appearance:

  1. that group cohomology is ordinary cohomology of the domain group’s classifying space;

  2. that the classifying space of the integers is the circle and that this respects Cartesian products;

  3. that the stable homotopy type of the 2-torus is the wedge sum of two circles with a 2-sphere (see there).

The generator of this cohomology group must be the group 2-cocycle

αH Grp 2( 2; k) \alpha \,\in\, H^2_{Grp}\big( \mathbb{Z}^2 ;\, \mathbb{Z}_k \big)

given by

(3) 2× 2 α n ((a,b),(a,b)) [ab], \begin{array}{ccc} \mathbb{Z}^2 \times \mathbb{Z}^2 &\xrightarrow{\; \alpha \;}& \mathbb{Z}_{n} \\ \big( (a,b), (a',b') \big) &\mapsto& [ a b'] \mathrlap{\,,} \end{array}

whose cocycle condition [ab]+[(a+a)b]=[a(b+b)]+[ab] [a b'] + [(a+a')b''] = [a(b'+b'')] + [a' b''] is evidently satisfied due to the distributive law in the ring \mathbb{Z} and which is clearly not divisible.  ▮

Example 2.2. In the integer Heisenberg group (1)

  • the inverse elements are given by

    (a,b,[n]) 1=(a,b,[n+ab]) \big(a ,\, b ,\, [n]\big)^{-1} \;=\; \big( -a ,\, -b ,\, [-n + a b] \big)
  • the basic group commutators give

    (4)[(1,0,0),(0,1,0)] (1,0,0)(0,1,0)(1,0,0) 1(0,1,0) 1 = (1,1,1)(1,0,0)(0,1,0) = (0,1,1)(0,1,0) = (0,0,1). \begin{array}{ccl} \big[ (1,0,0), (0,1,0) \big] &\equiv& (1,0,0) \cdot (0,1,0) \cdot (1,0,0)^{-1} \cdot (0,1,0)^{-1} \\ &=& (1,1,1) \cdot (-1,0,0) \cdot (0,-1,0) \\ &=& (0,1,1) \cdot (0,-1,0) \\ &=& (0,0,1) \mathrlap{\,.} \end{array}

Remark 2.3. The basic integer Heisenberg group extension (1), at k=0k = 0, is isomorphic to the matrix group of 3×33 \times 3 upper triangular matrices with integer entries and all “1”s on their diagonal, since matrix multiplication gives:

[1 a c 0 1 b 0 0 1][1 a c 0 1 b 0 0 1]=[1 a+a c+c+ab 0 1 b+b 0 0 1] \left[ \begin{matrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} 1 & a' & c' \\ 0 & 1 & b' \\ 0 & 0 & 1 \end{matrix} \right] \;=\; \left[ \begin{matrix} 1 & a + a' & c + c' + a b' \\ 0 & 1 & b + b' \\ 0 & 0 & 1 \end{matrix} \right]

In this matrix form the basic integer Heisenberg group H 3()H_3(\mathbb{Z}) is commonly known in the pure group theory-literature (e.g. Dummit & Foote 2006 p 35, Budylin 2014) where the higher level extensions typically do not find attention.

But the relation to the real Heisenberg group (in both senses of “real”) is made by the second multiple of this basic extension (cf. Gelca & Uribe 2010 p. 7, Gelca & Hamilton 2012 Def 2.4, Gelca & Hamilton 2015 Def 2.3):

Proposition 2.4. Twice the basic integer Heisenberg extension (3) is isomorphic to

(5){(a,b,[n])×× k, (a,b,[n])(a,b,[n])=(a+a,b+b,[n+n+abab])}. \left\{ \begin{array}{l} \big(a, b, [n]\big) \,\in\, \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{k} \,, \\ \big( a, b, [n] \big) \cdot \big( a', b', [n'] \big) \;=\; \big( a + a' ,\, b + b' ,\, [n + n' + {\color{red} a \cdot b' - a' \cdot b}] \big) \end{array} \right\} \mathrlap{\,.}

Proof. It is sufficient to see that the second red summand in (5) is a group 2-cocycle cohomologous to the first red summand, which means equivalently that the 2-cocycle

((a,b),(a,b))ab+ab \big( (a, b), (a', b') \big) \;\mapsto\; a \cdot b' + a' \cdot b

has a coboundary: This coboundary is readily found to be

(a,b)ab, (a, b) \;\mapsto\; - a \cdot b \,,

since

abab+(a+a)(b+b)=ab+ab. - a \cdot b - a' \cdot b' \,+\, (a + a') \cdot (b + b') \;=\; a \cdot b' + a' \cdot b \,.

  ▮

3. Properties

Basic properties

Proposition 3.1. The multiple=2 discrete Heisenberg group k 2^ 2\mathbb{Z}_{k} \to \widehat{\mathbb{Z}^{2}} \to \mathbb{Z}^2 (5) is the following quotient group of the product group F(a,b)× kF(a,b) \times \mathbb{Z}_{k} with the free group F(a,b)F(a,b) on two generators:

(6) 2^(F(a,b)× k)/(ab=[2]ba). \widehat{\mathbb{Z}^2} \,\simeq\, \big( F(a,b) \times \mathbb{Z}_{k} \big) \big/ \big( a \cdot b = [2] \cdot b \cdot a \big) \,.

Proof. The map

F(a,b)× kab=[2]ba 2^ [a] (1,0,0) [b] (0,1,0) [n] (0,0,[n]) \begin{array}{ccc} \frac{ F(a,b) \times \mathbb{Z}_{k} }{ a \cdot b = [2] \cdot b \cdot a } &\xrightarrow{\;}& \widehat{\mathbb{Z}^2} \\ [a] &\mapsto& (1,0,0) \\ [b] &\mapsto& (0,1,0) \\ [n] &\mapsto& (0,0,[n]) \end{array}

is clearly a bijection on underlying sets, and is a group homomorphism since the quotient relation (6) is respected in 2^\widehat{\mathbb{Z}^2}, by (4).  ▮

(cf. also arXiv:2203.08030, p 21)

Linear representations

Example 3.2. For kk \in \mathbb{Z}, linear representations of twice the 2k\mathbb{Z}_{2k}-Heisenberg extension of 2\mathbb{Z}^2 (5)

(7) 2^ W Aut( 1) \begin{array}{ccc} \widehat{\mathbb{Z}^2} & \xrightarrow{\; W \;} & \mathrm{Aut}\big( \mathscr{H}_1 \big) \end{array}

are given by:

1Span (|0,|1,,|k1,) \mathscr{H}_1 \;\coloneqq\; Span_{\mathbb{C}}\Big( {\vert 0 \rangle} ,\, {\vert 1 \rangle} ,\, \cdots ,\, {\vert k-1 \rangle}, \Big)
W a W(1,0,0) : |n ζ 2n|n W b W(0,1,0) : |n |(n+1)modk ζ W(0,0,1) : |n ζ|n, \begin{array}{ccccccl} W_a & \coloneqq & W(1,0,0) &\colon& {\big\vert n \big\rangle} &\mapsto& \zeta^{2n} {\big\vert n \big\rangle} \\ W_b &\coloneqq& W(0,1,0) &\colon& {\big\vert n \big\rangle} &\mapsto& {\big\vert (n + 1) \,mod\, k \big\rangle} \\ \zeta &\coloneqq& W(0,0,1) &\colon& {\big\vert n \big\rangle} &\mapsto& \zeta {\big\vert n \big\rangle} \mathrlap{\,,} \end{array}

for ζ\zeta a 2k2kth root of unity.

For instance:

(8)W aW bζ 1=W(1,1,0)=W bW aζ +1. W_a \cdot W_b \cdot \zeta^{-1} \;=\; W(1,1,0) \;=\; W_b \cdot W_a \cdot \zeta^{+1} \,.

Notation: In the following we write “[n][n]” for “nmodkn \,mod\, k” and “ [n]\sum_{[n]}” for “ n=0 k1\sum_{n =0}^{k-1}”.

Proof. To see that this is a linear representation, by (6) it is sufficient to check that the basic group commutator is represented, in that

(9)W aW b=ζ 2W bW a, W_a \cdot W_b \,=\, \zeta^2 \, W_b \cdot W_a \mathrlap{\,,}

which is evidently the case, since

W aW b|[n] = W a|[n+1] = ζ 2(n+1)|[n+1], \begin{array}{ccl} W_a \cdot W_b {\big\vert [n] \big\rangle} &=& W_a \cdot {\big\vert [n+1] \big\rangle} \\ &=& \zeta^{2(n+1)} \, {\big\vert [n+1] \big\rangle} \mathrlap{\,,} \end{array}

while

W bW a|[n] = ζ 2nW b|[n] = ζ 2n|[n+1]. \begin{array}{ccl} W_b \cdot W_a {\big\vert [n] \big\rangle} &=& \zeta^{2n} \, W_b {\big\vert [n] \big\rangle} \\ &=& \zeta^{2n} \, {\big\vert [n + 1] \big\rangle} \mathrlap{\,.} \end{array}

  ▮

For more on linear representations of the level=1=1 integer Heisenberg group, see Floratos & Tsohantjis 2022.

Remark 3.3. (relation to quantum states and quantum observables of abelian Chern-Simons theory)
The complex dimension of the representation 1\mathscr{H}_1 (7) is that expected for the space of quantum states of abelian Chern-Simons theory on a 2-torus (cf. Manoliu 1998a p 40, Gelca & Uribe 2010 Prop. 2.2)

(10)dim( 1)=K, dim(\mathscr{H}_1) \;=\; K \,,

and the group commutator-relation (9)

W aW b=ζ 2W bW a W_a \cdot W_b = \zeta^2 \, W_b \cdot W_a

of linear operators acting on this irrep (7) reflects the characteristic commutator-relation of Wilson loop-quantum observables in abelian Chern-Simons theory on a 2-torus (cf. Tong 2016 (5.28), p 166).

Modular automorphisms

Moreover, the integer Heisenberg group at leve 2 knows about the modular group acting on its irrep (7), hence on the space of quantum states T 2\mathscr{H}_{T^2} from Rem. 3.3, hence about the “modular functor” of abelian Chern-Simons theory:

Definition 3.4. (modular action on the integer Heisenberg group)
Since the colored summand in (5) is the canonical symplectic form on 2\mathbb{Z}^2, the integer symplectic group in dimension 2, hence the modular group

{gGL 2()|(g 11a+g 12b)(g 21a+g 22b)(g 11a+g 12b)(g 21a+g 22b)det(g)(abab)=abab}SL 2(), \Big\{ g \in \mathrm{GL}_2(\mathbb{Z}) \,\Big\vert\, \underset{ \mathrm{det}(g) \cdot (a b' - a' b) }{ \underbrace{ (g_{1 1} a + g_{12} b) (g_{2 1} a' + g_{22} b') - (g_{11} a' + g_{12}b') (g_{21} a + g_{22} b) } } = a b' - a'b \Big\} \;\simeq\; \mathrm{SL}_2(\mathbb{Z}) \,,

acts by evident group automorphism on (5):

(11)SL 2()× 2^ 2^ (g,(a,b,[n])) (g 11a+g 12b,g 21a+g 22b,[n]). \begin{array}{ccc} \mathrm{SL}_2(\mathbb{Z}) \times \widehat{\mathbb{Z}^2} &\xrightarrow{}& \widehat{\mathbb{Z}^2} \\ \Big( g, \big(a,b,[n]\big) \Big) &\mapsto& \Big( g_{11}a + g_{12}b ,\, g_{21}a + g_{22}b ,\, [n] \Big) \mathrlap{\,.} \end{array}

Remark 3.5. Recall (from there) that the modular group SL 2 ( ) SL_2(\mathbb{Z}) is the subgroup of the general linear group generated by the two elements

(12)S[0 1 1 0]andT[1 1 0 1]. S \;\coloneqq\; \left[ \begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array} \right] \;\;\;\;\; \text{and} \;\;\;\;\; T \;\coloneqq\; \left[ \begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array} \right] \mathrlap{\,.}

and presented via these generators subject to the following relations:

(13)SL 2()S,T|S 4=e,(TS) 3=e,S 2(TS)=(TS)S 2. SL_2(\mathbb{Z}) \;\simeq\; \big\langle S, T \,\big\vert\, S^4 = \mathrm{e} ,\, (T S)^3 = \mathrm{e} ,\, S^2 (T S) = (T S)S^2 \big\rangle \,.

Proposition 3.6. For even kk (10) there exists a linear representation

(14)SL 2()× 1 1, \begin{array}{ccc} \mathrm{SL}_2(\mathbb{Z}) \times \mathscr{H}_1 &\xrightarrow{\;}& \mathscr{H}_1 \mathrlap{\,,} \end{array}

of the modular group on the underlying complex vector space of (7), which intertwines the action (7) of 2^\widehat{\mathbb{Z}^2} on 1\mathscr{H}_1, with its automorphic images under the modular group action (11) on the Heisenberg group, in that:

(15)m(W)m(|[n])=m(W|[n]),{m SL 2() W 2^ |[n] 1. m(W) \cdot m\Big( {\big\vert [n] \big\rangle} \Big) \;=\; m\Big( W \cdot {\big\vert [n] \big\rangle} \Big) \,, \;\;\;\;\; \forall \left\{ \begin{array}{ccc} m &\in& SL_2(\mathbb{Z}) \\ W &\in& \widehat{\mathbb{Z}^2} \\ {\left\vert [n] \right\rangle} &\in& \mathscr{H}_1 \mathrlap{\,.} \end{array} \right.

In other words, (14) enhances 1\mathscr{H}_1 to a representation of the semidirect product group 2^SL 2()\widehat{\mathbb{Z}^2} \rtimes \mathrm{SL}_2(\mathbb{Z}) with operation

(W,m)(W,m)(Wm(W),mm). (W,m)\cdot (W',m') \;\coloneqq\; \big( W \cdot m(W'),\, m \cdot m' \big) \,.

This representation (14) is just the modular action known from abelian Chern-Simons theory at even level kk (cf. Wen 1990 (5.3), Manoliu 1998a p 67, Gannon 2005 (3.1b)):

(16)S(|[n]) = 1|k| [n^]e 2πin^nk|[n^] T(|[n]) = e πi/121/c ke πikn 2|[n] \begin{array}{ccr} S\Big( {\big\vert [n] \big\rangle} \Big) &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ T\Big( {\big\vert [n] \big\rangle} \Big) &=& \underset{ \eqqcolon 1/c_k }{ \underbrace{ e^{ - \pi \mathrm{i}/12 } } } \, e^{ \tfrac{\pi \mathrm{i}}{k} n^2 } {\big\vert [ n ] \big\rangle} \end{array}

Proof. To see that (16) is indeed a representation of the modular group, we need to check that the relations (13) are satisfied:

First we find

S 2(|[n]) = S(1|k| [n^]e 2πin^nk|[n^]) = [n^^]1k [n^]e 2πin^(n+n^^)kδ 0([n+n^^])|[n^^] = |[n] \begin{array}{rcl} S^2 \Big({\big\vert [n] \big\rangle}\Big) &=& S \Big( \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert[\widehat{n}]\big\rangle} \Big) \\ &=& \sum_{ [\widehat{\widehat n}] } \, \underset{ \delta_0\big( [ n + \widehat{\widehat{n}} ] \big) }{ \underbrace{ \tfrac{1}{k} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, (n + \widehat{\widehat{n}}) }{ k } } } } \, {\big\vert[\widehat{\widehat{n}}]\big\rangle} \\ &=& {\big\vert[-n]\big\rangle} \end{array}

(where under the brace we evaluated the sum of roots of unity), which immediately implies the relation S 4=idS^4 = \mathrm{id} and thereby, with

TS(|[n])=1|k|c k [n^]e πik(n^ 2+2n^n)|[n^], T \circ S \Big( {\big\vert [n] \big\rangle} \Big) \;=\; \tfrac{1}{\sqrt{\vert k \vert} c_k} \displaystyle{ \sum_{ [\widehat n] } } \, e^{ \tfrac{ \pi \mathrm{i} }{k} ( \widehat{n}^2 + 2\widehat{n} \, n ) } {\big\vert[\widehat{n}]\big\rangle} \,,

also the relation S 2(TS)=(TS)S 2S^2 (T S) = (T S) S^2. It just remains to show that (TS) 3=e(T S)^3 = \mathrm{e} or equivalently that STS=T 1S 1T 1S T S \,=\, T^{-1} S^{-1} T^{-1}. Direct computation yields:

T 1S 1T 1|n=T 1S 1e πikn 2|n =T 11k n^e πik(n 22n^n)|n^ =1k n^e πik(n 22n^nn^ 2)|n^ =1k n^e πik(n^+n) 2|n^andSTS|n=ST1|k| n^e 2πin^nk|n^ =S1k n^e πik(2n^n+n^ 2)|n^ =1k n^,n^^e πik(2n^n+n^ 2+2n^^n^)|n^^ =1k n^^1k n^e πik(n^+(n+n^^)) 2e πik(n+n^^) 2|n^^, \begin{array}{l} T^{-1} S^{-1} T^{-1} {\vert n \rangle} \;=\; T^{-1} S^{-1} e^{ - \tfrac{\pi \mathrm{i}}{k} n^2 } {\vert n \rangle} \\ \;=\; T^{-1} \tfrac{1}{\sqrt{k}} \sum_{\widehat{n}} e^{ \tfrac{\pi \mathrm{i}}{k} ( - n^2 - 2 \widehat{n} n ) } {\vert \widehat{n} \rangle} \\ \;=\; \tfrac{1}{\sqrt{k}} \sum_{\widehat{n}} e^{ \tfrac{\pi \mathrm{i}}{k} ( - n^2 - 2 \widehat{n} n - \widehat{n}^2 ) } {\vert \widehat{n} \rangle} \\ \;=\; \tfrac{1}{\sqrt{k}} \sum_{\widehat{n}} e^{ - \tfrac{\pi \mathrm{i}}{k} (\widehat{n} + n)^2 } {\vert \widehat{n} \rangle} \end{array} \;\;\;\;\;\;\;\;\;\;\;\;\; \text{and} \;\;\;\;\;\;\;\;\;\;\;\;\; \begin{array}{l} S T S {\big\vert n \big\rangle} \;=\; S T \frac{1}{\sqrt{\vert k \vert}} \sum_{ \widehat n } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert \widehat{n} \big\rangle} \\ \;=\; S \tfrac{1}{\sqrt{k}} \sum_{ \widehat n } \, e^{ \tfrac{\pi \mathrm{i}}{k} ( 2 \widehat{n} \, n + \widehat{n}^2 ) } {\big\vert \widehat{n} \big\rangle} \\ \;=\; \frac{1}{k} \sum_{ \widehat n ,\, \widehat{\widehat{n}} } \, e^{ \tfrac{\pi \mathrm{i}}{k} ( 2 \widehat{n} \, n + \widehat{n}^2 + 2 \widehat{\widehat{n}} \widehat{n} ) } {\big\vert \widehat{\widehat{n}} \big\rangle} \\ \;=\; \frac{1}{\sqrt{k}} \sum_{ \widehat{\widehat{n}} } \underbrace{ \tfrac{1}{\sqrt{k}} \sum_{ \widehat n } \, e^{ \tfrac{\pi \mathrm{i}}{k} (\widehat{n} + (n + \widehat{\widehat{n}}))^2 } } e^{ - \tfrac{\pi \mathrm{i}}{k} (n + \widehat{\widehat{n}})^2 } {\big\vert \widehat{\widehat{n}} \big\rangle} \,, \end{array}

where the term over the brace is in fact constant in nn and n^^\widehat{\widehat{n}} by the assumption that kk is even, because this implies that the summands are kk-periodic:

(17)e πik(n+k) 2=e πik(n 2+2nk+k 2)=e πikn 2e πi(2n+k)1ifkeven=e πikn 2. e^{ \tfrac{\pi \mathrm{i}}{k} (n + k)^2 } \;=\; e^{ \tfrac{\pi \mathrm{i}}{k} (n^2 + 2 n k + k^2) } \;=\; e^{ \tfrac{\pi \mathrm{i}}{k} n^2 } \underset{ 1\;if\;k\;even }{ \underbrace{ e^{ \pi \mathrm{i}(2n + k) } } } \;=\; e^{ \tfrac{\pi \mathrm{i}}{k} n^2 } \,.

This means that the last relation holds if the normalization factor c kc_k is indeed fixed, as shown in (16), to this quadratic Gauss sum, which evaluated to (see there)

(18)c k=(1k n^e πikn^ 2) 1/3=(i) 1/3=e πi/12. c_k \;=\; \Big( \tfrac{1}{\sqrt{k}} \textstyle{ \sum_{ \widehat n } } \, e^{ \tfrac{ \pi \mathrm{i} }{k} \widehat{n}^2 } \Big)^{1/3} \;=\; \big(\sqrt{\mathrm{i}}\big)^{1/3} \;=\; e^{ \pi \mathrm{i}/12 } \,.

Finally to see that also the semidirect product of these two groups is represented in that (15) holds:

We may explicitly check this for m{S,T}m \in \{S,T\} any one of the modular generators (12) by unwinding the above definitions:

S(W a)S(|[n]) W b 11|k| [n^]e 2πin^nk|[n^] = 1|k| [n^]e 2πi(n^+1)nk|[n^] = e 2πinkS(|[n]) = S(W a|[n]), \begin{array}{ccl} S(W_a) \cdot S\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_b^{-1} \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ (\widehat{n} + 1) \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& e^{ 2 \pi \mathrm{i} \tfrac{n}{k} } \, S\Big( {\big\vert [n] \big\rangle} \Big) \\ &=& S\Big( W_a {\big\vert [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}
S(W b)S(|[n]) W a1|k| [n^]e 2πin^nk|[n^] = 1|k| [n^]e 2πin^ke 2πin^nk|[n^] = S(W b|[n]), \begin{array}{ccl} S(W_b) \cdot S\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_a \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& \frac{1}{\sqrt{\vert k \vert}} \sum_{ [\widehat n] } \, e^{2 \pi \mathrm{i} \tfrac{\widehat{n}}{k}} e^{ 2 \pi \mathrm{i} \tfrac{ \widehat{n} \, n }{ k } } {\big\vert [\widehat{n}] \big\rangle} \\ &=& S\Big( W_b {\big| [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}
T(W a)T(|[n]) W ae iπn 2k|[n] = e 2πinke iπn 2k|[n] = T(W a|[n]), \begin{array}{ccl} T(W_a) \cdot T\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_a \, e^{ \mathrm{i} \pi \tfrac{n^2}{k} } {\big\vert [n] \big\rangle} \\ &=& e^{2 \pi \mathrm{i} \tfrac{n}{k}} e^{ \mathrm{i} \pi \tfrac{n^2}{k} } {\big\vert [n] \big\rangle} \\ &=& T\Big( W_a \, {\big\vert [n] \big\rangle} \Big) \mathrlap{\,,} \end{array}

and finally, using (8):

T(W b)T(|[n]) W bW ae πi1ke πin 2k|[n] = e πin 2+2n+1k|[n+1] = e πi(n+1) 2k|[n+1] = T(W b|[n]). \begin{array}{ccl} T(W_b)\cdot T\Big( {\big\vert [n] \big\rangle} \Big) &\equiv& W_b \, W_a \, e^{\pi \mathrm{i} \tfrac{1}{k}} \, e^{\pi \mathrm{i} \tfrac{n^2}{k}} {\big\vert [n] \big\rangle} \\ &=& e^{\pi \mathrm{i} \tfrac{ n^2 + 2n + 1 }{k}} {\big\vert [n + 1] \big\rangle} \\ &=& e^{\pi \mathrm{i} \tfrac{ (n+1)^2 }{k}} {\big\vert [n + 1] \big\rangle} \\ &=& T\Big( W_b {\big\vert [n] \big\rangle} \Big) \mathrlap{\,.} \end{array}

This completes the proof.  ▮


5. Literature

In group theory

Generally on the integer/discrete Heisenberg group in the algebra and group theory literature

On (invertibility in) the group algebra:

  • Martin Göll, Klaus Schmidt, Evgeny Verbitskiy: A Wiener Lemma for the discrete Heisenberg group: Invertibility criteria and applications to algebraic dynamics, Monatsh Math 180 (2016) 485–525 [doi:10.1007/s00605-016-0894-0, arXiv:1603.08225]

On the representation theory with an eye towards quantum information theory:

  • E. Floratos, I. Tsohantjis: Complete set of unitary irreps of Discrete Heisenberg Group HW 2 sH W_{2^s} [arXiv:2210.04263]

On the automorphism group:

See also:

In modular/Chern-Simons theory

In relation to U(1)U(1)-current algebra (WZW-model):

As describing the phase space of abelian Chern-Simons theory on closed Riemann surfaces (and its relation to skein relations and theta functions):

On group actions of the mapping class group of closed oriented surfaces on integer Heisenberg groups:

The above discussion of irreps and modular automorphisms related to abelian Chern-Simons theory follows:

Last revised on April 13, 2025 at 12:50:10. See the history of this page for a list of all contributions to it.