superalgebra and (synthetic ) supergeometry
higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
manifolds and cobordisms
cobordism theory, Introduction
The moduli space of super Riemann surfaces.
Just like the moduli space of Riemann surfaces is an orbifold, so the moduli space super-Riemann surfaces is a super-orbifold (e.g. Rabin 87, LeBrun-Rothstein 88, Witten 12, Codogni-Viviani 17).
Jeffrey Rabin, Supermanifolds and Super Riemann Surfaces, In: H.C. Lee et. al (eds.) Super Field Theories, NATO Science Series (Series B: Physics), vol 160. Springer (1987) (doi:10.1007/978-1-4613-0913-0_34, pdf)
Claude LeBrun, Mitchell Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. Volume 117, Number 1 (1988), 159-176 (euclid:cmp/1104161598)
Edward Witten, Notes On Super Riemann Surfaces And Their Moduli, Pure and Applied Mathematics Quarterly Volume 15 (2019) Number 1
Special Issue on Super Riemann Surfaces and String Theory (arXiv:1209.2459, doi:10.4310/PAMQ.2019.v15.n1.a2)
Giulio Codogni, Filippo Viviani, Moduli and Periods of Supersymmetric Curves, Adv. Theor. Math. Phys. 23 (2019) 2, 345-402 (arXiv:1706.04910, doi:10.4310/ATMP.2019.v23.n2.a2)
Created on July 10, 2020 at 14:33:57. See the history of this page for a list of all contributions to it.