nLab underlying type of free infinity-group

Contents

Context

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Deduction and Induction

Foundations

foundations

The basis of it all

 Set theory

set theory

Foundational axioms

foundational axioms

Removing axioms

Higher algebra

Contents

Idea

In dependent type theory with uniqueness of identity proofs, the free group on a type AA is the (higher) inductive type generated by an element unit:FreeGroup(A)\mathrm{unit}:\mathrm{FreeGroup}(A) and a function gen:A(FreeGroup(A)FreeGroup(A))\mathrm{gen}:A \to (\mathrm{FreeGroup}(A) \simeq \mathrm{FreeGroup}(A)). However, in dependent type theory without uniqueness of identity proofs, the resulting type is no longer a free group, because the resulting type is no longer 0-truncated. Instead, it is the underlying type of the free \infty -group on a type AA, and denoted as UTFIG(A)\mathrm{UTFIG}(A). Nonetheless, the underlying type of the free infinity group on a set AA is a group.

This is the invertible version of the type of lists List(A)\mathrm{List}(A) on a type AA, which in the context of uniqueness of identity proofs is the free monoid on a type AA, but without uniqueness of identity proofs is the underlying type of the free A A_\infty -space on a type AA; i.e. a free monoid in a monoidal (infinity,1)-category, and \infty-groups are the invertible versions of A A_\infty-spaces.

Definitions

Assuming that identification types, equivalence types and dependent product types exist in the type theory, the underlying type of the free infinity-group on a type AA of generators is the (higher) inductive type UTFIG(A)\mathrm{UTFIG}(A) generated by an element unit:UTFIG(A)\mathrm{unit}:\mathrm{UTFIG}(A) and a function gen:A(UTFIG(A)UTFIG(A))\mathrm{gen}:A \to (\mathrm{UTFIG}(A) \simeq \mathrm{UTFIG}(A)):

Formation rules for the underlying type of the free infinity-group:

ΓAtypeΓUTFIGtype\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathrm{UTFIG} \; \mathrm{type}}

Introduction rules for the underlying type of the free infinity-group:

ΓAtypeΓunit:UTFIG(A)ΓAtypeΓgen:A(UTFIG(A)UTFIG(A))\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathrm{unit}:\mathrm{UTFIG}(A)} \qquad \frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathrm{gen}:A \to (\mathrm{UTFIG}(A) \simeq \mathrm{UTFIG}(A))}

Elimination rules for the underlying type of the free infinity-group:

ΓAtypeΓ,x:UTFIG(A)C(x)type Γc unit:C(unit)Γc gen: a:A x:UTFIG(A)C(x)C(gen(a)(x)) Γg:UTFIG(A))Γind UTFIG(A) C(c unit,c gen,g):C(g)\frac{ \begin{array}{l} \Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \\ \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A)} C(x) \simeq C(\mathrm{gen}(a)(x)) \\ \Gamma \vdash g:\mathrm{UTFIG}(A)) \end{array} }{\Gamma \vdash \mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, g):C(g)}


Computation rules for the underlying type of the free infinity-group:

  • Judgmental computation rules
ΓAtypeΓ,x:UTFIG(A)C(x)type Γc unit:C(unit)Γc gen: a:A x:UTFIG(A))C(x)C(gen(a)(x))Γind UTFIG(A) C(c unit,c gen,0)c unit:C(unit)\frac{ \begin{array}{l} \Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \\ \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A))} C(x) \simeq C(\mathrm{gen}(a)(x)) \end{array} }{\Gamma \vdash \mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, 0) \equiv c_\mathrm{unit}:C(\mathrm{unit})}


ΓAtypeΓ,x:UTFIG(A)C(x)type Γc unit:C(unit)Γc gen: a:A x:UTFIG(A))C(x)C(gen(a)(x)) Γb:AΓg:UTFIG(A))Γind UTFIG(A) C(c unit,c gen,gen(b)(g))c gen(b)(g)(ind UTFIG(A) C(c unit,c gen,g)):C(gen(b)(g))\frac{ \begin{array}{l} \Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \\ \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A))} C(x) \simeq C(\mathrm{gen}(a)(x)) \\ \Gamma \vdash b:A \quad \Gamma \vdash g:\mathrm{UTFIG}(A)) \end{array} }{\Gamma \vdash \mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, \mathrm{gen}(b)(g)) \equiv c_\mathrm{gen}(b)(g)(\mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, g)):C(\mathrm{gen}(b)(g))}


  • Typal computation rules
ΓAtypeΓ,x:UTFIG(A)C(x)type Γc unit:C(unit)Γc gen: a:A x:UTFIG(A))C(x)C(gen(a)(x))Γβ UTFIG(A) unit(c unit,c gen):Id C(unit)(ind UTFIG(A) C(c unit,c gen,0),c unit)\frac{ \begin{array}{l} \Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \\ \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A))} C(x) \simeq C(\mathrm{gen}(a)(x)) \end{array} }{\Gamma \vdash \beta_{\mathrm{UTFIG}(A)}^\mathrm{unit}(c_\mathrm{unit}, c_\mathrm{gen}):\mathrm{Id}_{C(\mathrm{unit})}(\mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, 0), c_\mathrm{unit})}


ΓAtypeΓ,x:UTFIG(A)C(x)type Γc unit:C(unit)Γc gen: a:A x:UTFIG(A))C(x)C(gen(a)(x)) Γb:AΓg:UTFIG(A))Γβ UTFIG(A) gen(c unit,c gen,b,g):Id C(gen(b)(g))(ind UTFIG(A) C(c unit,c gen,gen(b)(g)),c gen(b)(g)(ind UTFIG(A) C(c unit,c gen,g)))\frac{ \begin{array}{l} \Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \\ \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A))} C(x) \simeq C(\mathrm{gen}(a)(x)) \\ \Gamma \vdash b:A \quad \Gamma \vdash g:\mathrm{UTFIG}(A)) \end{array} }{\Gamma \vdash \beta_{\mathrm{UTFIG}(A)}^\mathrm{gen}(c_\mathrm{unit}, c_\mathrm{gen}, b, g):\mathrm{Id}_{C(\mathrm{gen}(b)(g))}(\mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, \mathrm{gen}(b)(g)), c_\mathrm{gen}(b)(g)(\mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c_\mathrm{unit}, c_\mathrm{gen}, g)))}


Uniqueness rules for the underlying type of the free infinity-group:

  • Judgmental uniqueness rules
ΓAtypeΓ,x:UTFIG(A)C(x)typeΓc: x:UTFIG(A)C(x)Γg:UTFIG(A)Γind UTFIG(A) C(c(unit),λa:A.λx:UTFIG(A).c(gen(a)(x)),g)c(g):C(g)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c:\prod_{x:\mathrm{UTFIG}(A)} C(x) \quad \Gamma \vdash g:\mathrm{UTFIG}(A)}{\Gamma \vdash \mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c(\mathrm{unit}), \lambda a:A.\lambda x:\mathrm{UTFIG}(A).c(\mathrm{gen}(a)(x)), g) \equiv c(g):C(g)}
  • Typal uniqueness rules
ΓAtypeΓ,x:UTFIG(A)C(x)typeΓc: x:UTFIG(A)C(x)Γg:UTFIG(A)Γη UTFIG(A)(c,n):Id C(g)(ind UTFIG(A) C(c(unit),λa:A.λx:UTFIG(A).c(gen(a)(x)),g),c(g))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c:\prod_{x:\mathrm{UTFIG}(A)} C(x) \quad \Gamma \vdash g:\mathrm{UTFIG}(A)}{\Gamma \vdash \eta_{\mathrm{UTFIG}(A)}(c, n):\mathrm{Id}_{C(g)}(\mathrm{ind}_{\mathrm{UTFIG}(A)}^C(c(\mathrm{unit}), \lambda a:A.\lambda x:\mathrm{UTFIG}(A).c(\mathrm{gen}(a)(x)), g), c(g))}

The elimination, typal computation, and typal uniqueness rules for the underlying type of the free infinity-group state that the underlying type of the free infinity-group satisfy the dependent universal property of the underlying type of the free infinity-group. If the dependent type theory also has dependent sum types and product types, allowing one to define the uniqueness quantifier, the dependent universal property of the underlying type of the free infinity-group could be simplified to the following rule:

ΓAtypeΓ,x:UTFIG(A)C(x)typeΓc unit:C(unit)Γc gen: a:A x:UTFIG(A))C(x)C(gen(a)(x))Γup C(c unit,c gen):!c: x:UTFIG(A))C(x).Id C(unit)(c(unit),c unit)× a:A x:UTFIG(A)Id C(gen(a)(x))(c(gen(a)(x)),c gen(a)(c(x)))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:\mathrm{UTFIG}(A) \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_\mathrm{unit}:C(\mathrm{unit}) \quad \Gamma \vdash c_\mathrm{gen}:\prod_{a:A} \prod_{x:\mathrm{UTFIG}(A))} C(x) \simeq C(\mathrm{gen}(a)(x))}{\Gamma \vdash \mathrm{up}_\mathbb{Z}^C(c_\mathrm{unit}, c_\mathrm{gen}):\exists!c:\prod_{x:\mathrm{UTFIG}(A))} C(x).\mathrm{Id}_{C(\mathrm{unit})}(c(\mathrm{unit}), c_\mathrm{unit}) \times \prod_{a:A} \prod_{x:\mathrm{UTFIG}(A)} \mathrm{Id}_{C(\mathrm{gen}(a)(x))}(c(\mathrm{gen}(a)(x)), c_\mathrm{gen}(a)(c(x)))}

Properties

H-space structure on the underlying type of the free infinity-group

Definition

The binary operation μ\mu on the underlying type of the free infinity-group is defined by induction on the underlying type of the free infinity-group

Introduction rules for μ\mu:

ΓAtypeΓ,x:UTFIG(A)μ(x):UTFIG(A)UTFIG(A)\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, x:\mathrm{UTFIG}(A) \vdash \mu(x):\mathrm{UTFIG}(A) \simeq \mathrm{UTFIG}(A)}

By uncurrying the equivalence of types one gets the binary operation

ΓAtypeΓ,x:UTFIG(A),y:UTFIG(A)μ(x,y):UTFIG(A)\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, x:\mathrm{UTFIG}(A), y:\mathrm{UTFIG}(A) \vdash \mu(x, y):\mathrm{UTFIG}(A)}

Computation rules for μ\mu:

ΓAtypeΓ,g:UTFIG(A)β UTFIG(A) μ,unit(g):μ(unit)(g)= UTFIG(A)g\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, g:\mathrm{UTFIG}(A) \vdash \beta_{\mathrm{UTFIG}(A)}^{\mu, \mathrm{unit}}(g):\mu(\mathrm{unit})(g) =_{\mathrm{UTFIG}(A)} g}
ΓAtypeΓ,a:A,x:UTFIG(A),g:UTFIG(A)β μ,gen(a,x,g):μ(gen(a)(x))(g)= gen(a)(μ(x,g))\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma, a:A, x:\mathrm{UTFIG}(A), g:\mathrm{UTFIG}(A) \vdash \beta_\mathbb{Z}^{\mu, \mathrm{gen}}(a, x, g):\mu(\mathrm{gen}(a)(x))(g) =_\mathbb{Z} \mathrm{gen}(a)(\mu(x, g))}

Theorem

The underlying type of the free infinity-group of AA is a non-coherent H-space with respect to the unit unit:UTFIG(A)\mathrm{unit}:\mathrm{UTFIG}(A) found in the introduction rule of the underlying type of the free-infinity group and the binary operation x:UTFIG(A),y:UTFIG(A)μ(x)(y):UTFIG(A)x:\mathrm{UTFIG}(A), y:\mathrm{UTFIG}(A) \vdash \mu(x)(y):\mathrm{UTFIG}(A) defined above.

Proof

The left homotopy comes from the computation laws for the operation μ\mu expressed above.

λx:UTFIG(A).β UTFIG(A) μ,unit(x): x:UTFIG(A)μ(unit)(x)= UTFIG(x)g\lambda x:\mathrm{UTFIG}(A).\beta_{\mathrm{UTFIG}(A)}^{\mu, \mathrm{unit}}(x):\prod_{x:\mathrm{UTFIG}(A)} \mu(\mathrm{unit})(x) =_{\mathrm{UTFIG}(x)} g

It remains to construct the right homotopy

See also

Last revised on January 24, 2023 at 19:26:15. See the history of this page for a list of all contributions to it.