∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
-Lie groupoids
-Lie groups
-Lie algebroids
-Lie algebras
The notion of Kac-Moody Lie algebra is a generalization of that of semisimple Lie algebra to infinite dimension of the underlying vector space.
(…)
The sequence of exceptional semisimple Lie algebras E7, E7, E8 may be continued to the Kac-Moody algebras:
On the Wess-Zumino-Witten model 2d CFT via Kac-Moody algebra and Virasoro algebra:
See also:
Lecture notes:
Antony Wassermann, Kac-Moody and Virasoro algebras, course notes (2011) (pdf)
Hermann Nicolai, Infinite dimensional symmetries (2009) (pdf)
The standard textbook is
Collections of articles:
Surveys:
The fact that every simply laced hyperbolic Kac-Moody algebra appears as a subalgebra of E10 is in
As far as applications this is the most important class. See Lab entry affine Lie algebra and
The following references discuss aspects of the Kac-Moody exceptional geometry of supergravity theories.
(for much more see the references at U-duality and exceptional field theory)
Hermann Nicolai, Infinite dimensional symmetries (2009) (pdf)
Paul Cook, Connections between Kac-Moody algebras and M-theory PhD thesis (arXiv:0711.3498)
Daniel Persson, Nassiba Tabti, Lectures on Kac-Moody algebras with applications in (Super-)Gravity (pdf)
On non-trivial finite-dimensional representations of involutary (“maximal compact”) subalgebras :
Axel Kleinschmidt, Hermann Nicolai, Adriano Viganò: On spinorial representations of involutory subalgebras of Kac-Moody algebras, In: Partition Functions and Automorphic Forms, Moscow Lectures 5, Springer (2020) [arXiv:1811.11659, doi:10.1007/978-3-030-42400-8_4]
Axel Kleinschmidt, Ralf Köhl?, Robin Lautenbacher?, Hermann Nicolai: Representations of involutory subalgebras of affine Kac-Moody algebras, Commun. Math. Phys. 392 (2022) 89–123 [arXiv:2102.00870, doi:10.1007/s00220-022-04342-9]
Axel Kleinschmidt, Hermann Nicolai, Jakob Palmkvist: from , Journal of High Energy Physics 2007 JHEP06 (2007) [arXiv:hep-th/0611314, doi:10.1088/1126-6708/2007/06/051]
Last revised on November 2, 2024 at 08:46:12. See the history of this page for a list of all contributions to it.