exceptional geometry



The classification of Riemannian manifolds with special holonomy contains two “exceptional” cases: G2-holonomy in dimension 7, and Spin(7)-holonomy in dimension 8. Their study is the topic of exceptional geometry.

Sometimes more generally, exceptional geometry is understod to study spaces controled by exceptional Lie groups in some way.



General discussion is in

Discussion of G2 manifolds is in

  • Spiro Karigiannis, G 2G_2-manifolds – Exceptional structures in geometry arising from exceptional algebra (pdf)

In supergravity

Applications to KK-compactification of 11d supergravity (see also at M-theory on G2-manifolds) is discussed in

For more along these lines see the references at exceptional generalized geometry.

As M-brane target space

Discusssion of M-brane sigma-models on exceptional geometry target spaces is in

  • Yuho Sakatani, Shozo Uehara, Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry, Phys. Rev. Lett. 117, 191601 (2016) (arXiv:1607.04265, talk slides)

  • Yuho Sakatani, Shozo Uehara, Exceptional M-brane sigma models and η\eta-symbols (arXiv:1712.10316)

Last revised on February 16, 2018 at 06:43:47. See the history of this page for a list of all contributions to it.