exceptional structures, exceptional isomorphisms
exceptional finite rotation groups:
and Kac-Moody groups:
exceptional Jordan superalgebra,
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
-Lie groupoids
-Lie groups
-Lie algebroids
-Lie algebras
One of the affine Kac-Moody groups in the E-series.
In contrast to the full affine Lie algebra , the “maximal compact subalgebra” has non-trivial finite-dimensional representations [Nicolai & Samtleben 2005, KKLN22].
Specifically, under the restriction (“branching”) of the basic representation of along the inclusion the first (namely: parabolic level zero) -irrep summand has dimension . [König 2024, top of p 38 and pp 41-42].
is the U-duality group (see there) of 11-dimensional supergravity compactified to 2 dimensions.
U-duality group of 11-dimensional supergravity compactified to 2 dimensions.
(…)
Discussion of in view of U-duality-symmetry of D=11 supergravity reduced to :
On finite-dimensional representations of the maximal compact subalgebra :
Hermann Nicolai, Henning Samtleben: On , Pure and Applied Mathematics Quarterly 1 1 (2005) 180–204 [arXiv:hep-th/0407055, doi:10.4310/PAMQ.2005.v1.n1.a8]
Axel Kleinschmidt, Ralf Köhl, Robin Lautenbacher, Hermann Nicolai: Representations of involutory subalgebras of affine Kac-Moody algebras, Commun. Math. Phys. 392 (2022) 89–123 [arXiv:2102.00870, doi:10.1007/s00220-022-04342-9]
Benedikt König: -structure of basic representation of affine algebras [arXiv:2407.12748]
On BPS states of D=11 supergravity via the representation theory of :
On -exceptional field theory-formulation of D=11 supergravity:
Guillaume Bossard, Franz Ciceri, Gianluca Inverso, Axel Kleinschmidt, Henning Samtleben: exceptional field theory I. The potential J. High Energ. Phys. 2019 89 (2019) [arXiv:1811.04088, doi:10.1007/JHEP03(2019)089]
Guillaume Bossard, Franz Ciceri, Gianluca Inverso, Axel Kleinschmidt, Henning Samtleben: exceptional field theory II. The complete dynamics, J. High Energ. Phys. 2021 107 (2021). [arXiv:2103.12118, doi:10.1007/JHEP05(2021)107]
On the maximal compact subalgebras of E9 (and E10) and their finite-dimensional linear representations:
Hermann Nicolai, Henning Samtleben: On , Q. J. Pure Appl. Math. 1 (2005) 180-204 [arXiv:hep-th/0407055, doi:10.4310/PAMQ.2005.v1.n1.a8]
Axel Kleinschmidt, Hermann Nicolai, Jakob Palmkvist: from , Journal of High Energy Physics 2007 JHEP06 (2007) [arXiv:hep-th/0611314, doi:10.1088/1126-6708/2007/06/051]
Axel Kleinschmidt, Hermann Nicolai: Generalised holonomies and , J. High Energ. Phys. 2021 54 (2021) [arXiv:2107.02445, doi:10.1007/JHEP09(2021)054]
Last revised on November 5, 2024 at 16:26:46. See the history of this page for a list of all contributions to it.