nLab
M-theory on hyperbolic manifolds

Contents

Context

String theory

Riemannian geometry

Contents

Idea

The Kaluza-Klein compactification of 11-dimensional supergravity/M-theory on fibers which are hyperbolic manifolds.

This appears naturally as the near horizon geometry of S-branes, see there. Then there are M5-branes wrapped on hyperbolic 3-manifolds yielding the 3d-3d correspondence (Gang-Kim-Lee 15, (2.2)).

KK-compactification of M-theory

References

  • A. Kehagias, J. G. Russo, Hyperbolic Spaces in String and M-Theory, JHEP 0007 (2000) 027 (arXiv:hep-th/0003281)

  • Chiang-Mei Chen, Pei-Ming Ho, Ishwaree P. Neupane, Nobuyoshi Ohta, John E. Wang, Hyperbolic Space Cosmologies, JHEP 0310:058, 2003 (arXiv:hep-th/0306291)

  • A. A. Bytsenko, M. E. X. Guimaraes, R. Kerner, Orbifold Compactification and Solutions of M–Theory from Milne Spaces, Eur. Phys. J. C39:519-524, 2005 (arXiv:hep-th/0501008)

  • Andrey A. Bytsenko, Maria Emília X. Guimarães, José Abdalla Helayël-Neto, Hyperbolic Space Forms and Orbifold Compactification in M-Theory, PoS WC2004 (2005) pp.017 (arXiv:hep-th/0502031, cds:819828)

  • Domenico Orlando, M-theory compactifications on hyperbolic spaces, Fortsch. Phys. 55:793-797, 2007 (arXiv:hep-th/0702013)

  • Domenico Orlando, Seong Chan Park, Compact hyperbolic extra dimensions: a M-theory solution and its implications for the LHC, JHEP 1008:006, 2010 (arXiv:1006.1901)

See also

  • Alan S. Cornell, Hyperbolic extra-dimensions in particle physics and beyond (arXiv:1506.05598)

Discussion on M5-branes wrapped on hyperbolic 3-space in the context of 3d-3d correspondence:

  • Dongmin Gang, Nakwoo Kim, Sangmin Lee, Holography of 3d-3d correspondence at Large N, JHEP04 (2015) 091 (arXiv:1409.6206)

Last revised on October 30, 2019 at 08:17:44. See the history of this page for a list of all contributions to it.