nLab Pin(2)

Contents

Context

Group Theory

Spin geometry

Contents

Idea

The Pin group in dimension 2.

Properties

Let \mathbb{H} be the quaternions generated from unit imaginaries i\mathbf{i}, j\mathbf{j} with kij\mathbf{k} \coloneqq \mathbf{i} \, \mathbf{j}, with a copy of the complex numbers identified as

x+iy x+iy. \begin{array}{ccc} \mathbb{C} &\xhookrightarrow{\phantom{---}}& \mathbb{H} \\ x + \mathrm{i} y &\mapsto& x + \mathbf{i} y \mathrlap{\,.} \end{array}

Identify the circle group with the unit circle in \mathbb{C} \hookrightarrow \mathbb{H} this way

SO(2) S() x+iy x+iyx,y x 2+y 2=1, \begin{array}{ccccc} SO(2) &\simeq& S\big( \mathbb{C}\big) &\xhookrightarrow{\phantom{--}}& \mathbb{H} \\ && x + \mathrm{i} y &\mapsto& x + \mathbf{i} y \end{array} \phantom{-------} \begin{array}{l} x,y \in \mathbb{R} \\ x^2 + y^2 = 1 \mathrlap{\,,} \end{array}

with group structure now thought of as given by multiplication of quaternions. Then the Pin group Pin (2)Pin_-(2) is isomorphic to the subgroup of the group of units ×\mathbb{H}^\times of the quaternions which consists of this copy of SO(2), together with the multiples of the imaginary quaternion j\mathbf{j} with this copy:

(1)Pin (2)S()jS() ×. Pin_-(2) \;\simeq\; S\big( \mathbb{C}\big) \;\cup\; \mathbf{j} \cdot S\big( \mathbb{C}\big) \;\subset\; \mathbb{H}^\times \,.

This is in fact inside the unit sphere S()S(\mathbb{H}) \simeq Spin(3), whence we have a canonical inclusion

(2)Pin (2)Spin(3). Pin_-(2) \xhookrightarrow{\phantom{--}} Spin(3) \,.

Properties

Relation to orthogonal and binary dihedral groups

By the classification of the finite subgroups of Spin(3) this means that the restriction of Pin (2)Pin_-(2) to the inclusion of the dihedral group D 2nD_{2n} into the orthogonal group O(2)O(2) is the binary dihedral group 2D 2n2 D_{2n}:

(3)2D 2n AA Pin (2) AA Spin(3) (pb) (pb) D 2n AA O(2) AA SO(3) \array{ 2 D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& Pin_-(2) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(3) \\ \big\downarrow &{}^{(pb)}& \big\downarrow &{}^{(pb)}& \big\downarrow \\ D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& O(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) }

To make this fully explicit:

With the presentation (1) we are to identify the plane with the linear span of the generators j\mathbf{j} and k\mathbf{k}

2j,k im, \mathbb{R}^2 \;\simeq\; \langle \mathbf{j}, \mathbf{k}\rangle \;\subset\; \mathbb{H}_{\mathrm{im}} \mathrlap{\,,}

where we may think of

  • j\langle \mathbf{j} \rangle as the x-axis,

  • k\langle \mathbf{k} \rangle as the y-axis.

The action of Pin (2)Pin_-(2) on 2\mathbb{R}^2 is by conjugation in \mathbb{H}. Hence we have plane rotation operators

R αAd cos(α/2)+sin(α/2)iS()S() R_{\alpha} \;\coloneqq\; Ad_{ \cos(\alpha/2) + \sin(\alpha/2) \mathbf{i} } \;\in\; S(\mathbb{C}) \subset S(\mathbb{H})

acting on 2\mathbb{R}^2 as

R α(j) (cos(α/2)+sin(α/2)i)j(cos(α/2)sin(α/2)i) = (cos(α/2) 2sin(α/2) 2)j+(2sin(α/2)cos(α/2))k = cos(α)j+sin(α)k \begin{array}{rcl} R_\alpha(\mathbf{j}) &\equiv& \big( \cos(\alpha/2) + \sin(\alpha/2)\mathbf{i} \big) \, \mathbf{j} \, \big( \cos(\alpha/2) - \sin(\alpha/2)\mathbf{i} \big) \\ &=& \big( \cos(\alpha/2)^2 - \sin(\alpha/2)^2 \big) \, \mathbf{j} + \big( 2 \sin(\alpha/2) \cos(\alpha/2) \big) \, \mathbf{k} \\ &=& \cos(\alpha) \, \mathbf{j} + \sin(\alpha) \, \mathbf{k} \end{array}

(in the last line we used the sum-of-angles trigonometric identities)

and in addition the reflection operator I yAd jI_y \coloneqq Ad_{\mathbf{j}} acting as

I yj=jj(j)=j I_y \mathbf{j} \;=\; \mathbf{j} \, \mathbf{j} \, (- \mathbf{j}) \;=\; \mathbf{j}
I yk=jk(j)=k I_y \mathbf{k} \;=\; \mathbf{j} \, \mathbf{k} \, (- \mathbf{j}) \;=\; - \mathbf{k}

(hence inverting the y-axis).

Together these clearly generate the group O(2). Since the conjugation action assignment

Pin (2) O(2) g Ad g \begin{array}{ccc} Pin_-(2) &\longrightarrow& O(2) \\ g &\mapsto& Ad_g \end{array}

has kernel {±1}Pin (2)\{\pm 1\} \in Pin_-(2), this exhibits Pin (2)Pin_-(2) as the double cover of O(2).

To note here that under the inclusion Pin (2)Spin(3)Pin_-(2) \hookrightarrow Spin(3) (2), the above inversion of the yy axis in 2D corresponds to rotation around the x-axis, in 3D!

Appearance in Seiberg-Witten theory and Floer homology

On a spin 4-manifold, the U(1)U(1)-symmetry of the Seiberg-Witten equations enhances to a Pin(2)Pin(2)-symmetry (Furuta 01). Because of this, Pin(2)Pin(2)-equivariance appears in Seiberg-Witten theory and Floer homology. See the references below.

rotation groups in low dimensions:

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
\vdots\vdots
D8SO(16)Spin(16)SemiSpin(16)
\vdots\vdots
D16SO(32)Spin(32)SemiSpin(32)

see also

References

Pin(2)Pin(2)-equivariant homotopy theory/equivariant cohomology theory

application to Seiberg-Witten theory and Floer homology:

  • Mikio Furuta, Monopole equation and the 11/811/8-conjecture Mathematical Research Letters, Volume 8, Number 3, (2001).

  • Ciprian Manolescu, Pin(2)Pin(2)-equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture (arXiv:1303.2354)

  • Matthew Stoffregen, Pin(2)Pin(2)-equivariant Seiberg-Witten Floer homology of Seifert fibrations (arXiv:1505.03234)

  • Matthew Stoffregen, A Remark on Pin(2)Pin(2)-Equivariant Floer Homology, Michigan Math. J. Volume 66, Issue 4 (2017), 867-884 (euclid:1508810818)

Pin(2)Pin(2)-equivariant KO-theory:

  • Jianfeng Lin, Pin(2)-equivariant KO-theory and intersection forms of spin four-manifolds, Algebr. Geom. Topol. 15 (2015) 863-902 (arXiv:1401.3264)

Last revised on June 27, 2025 at 11:11:18. See the history of this page for a list of all contributions to it.