algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)
quantum mechanical system, quantum probability
interacting field quantization
physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
In quantum field theory with chiral fermions (spinor fields) with chiral version of the Dirac current , a chiral anomaly is a non-conservation of this current
(See at Ward identity.)
In the standard model of particle physics this happens and plays a role for pion decay and for baryogenesis. Here the current is the baryon current and the anomaly term is the Pontryagin 4-form of the gauge field , hence the curvature 4-form of the corresponding Chern-Simons line 3-bundle.
If there are instantons, i.e. if the gauge field principal connection has a nontrivial underlying principal bundle, then also the Chern-Simons line 3-bundle is topologically nontrivial the anomaly term is a non-exact integral form, hence the above equation is to be read as the local expression identifying with the local 3-connection on the CS 3-bundle.
The “topological”-part of the baryon current (the piece that is not generally conserved, reflecting the chiral anomaly), is the Wess-Zumino-Witten term of the exponentiated pion field:
Here the expression in the first line uses the fact that SU(2) is a matrix group, while the second line exporesses the same via pullback of the Maurer-Cartan form from the group manifold.
The homotopy class of the exponentiated pion field (1), as a continuous function, is an element of the (co-)homotopy group of spheres , is the Skyrmion-number, or, in fact, the baryon-number, encoded in the knotted stucture of the pion field.
See also physics.stackexchange.com/a/306242/5603
The orginal observation is due to
Stephen Adler. Axial-Vector Vertex in Spinor Electrodynamics, Physical Review 177 (5): 2426. (1969)
John Bell, Roman Jackiw, A PCAC puzzle: in the σ-model“. Il Nuovo Cimento A 60: 47. (1969)
A detailed mathematical derivation is in
See also:
Detailed argument for the theta vacuum (Yang-Mills instanton vacuum) from chiral symmetry breaking :
Curtis Callan, R.F. Dashen, David Gross, The Structure of the Gauge Theory Vacuum, Phys.Lett. 63B (1976) 334-340 (spire)
G. Morchio, Franco Strocchi, Chiral symmetry breaking and theta vacuum structure in QCD, Annals Phys. 324 (2009) 2236-2254 [arXiv:0907.2522, doi:10.1016/j.aop.2009.07.005]
Textbook account:
Further review:
Raphael Flauger, Anomalies and the Atiyah-Singer Index Theorem (pdf)
Jeffrey Harvey, section 1 and 3.6 of TASI 2003 Lectures on Anomalies (arXiv:hep-th/0509097)
B.L.Ioffe, Axial anomaly: the modern status, Int. J. Mod. Phys. A21:6249-6266,2006 (arXiv:hep-ph/0611026)
Roman Jackiw, Axial anomaly, (2008), Scholarpedia, 3(10):7302. (web)
Wikipedia, Chiral anomaly
Discussion in the rigorous context of causal perturbation theory/perturbative AQFT is (for ) in
and (for ) in
and reviewed in the context the master Ward identity in
Application to baryogenesis is due to
Gerard 't Hooft, Symmetry Breaking through Bell-Jackiw Anomalies Phys. Rev. Lett. 37 (1976) (pdf)
Gerard 't Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D14:3432-3450 (1976).
Via holographic QCD:
The gauged WZW term of chiral perturbation theory/quantum hadrodynamics which reproduces the chiral anomaly of QCD in the effective field theory of mesons and Skyrmions:
The original articles:
Julius Wess, Bruno Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95-97 (spire:67330, doi:10.1016/0370-2693(71)90582-X)
Edward Witten, Global aspects of current algebra, Nuclear Physics B Volume 223, Issue 2, 22 August 1983, Pages 422-432 (doi:10.1016/0550-3213(83)90063-9)
See also:
Corrections and streamlining of the computations:
Chou Kuang-chao, Guo Han-ying, Wu Ke, Song Xing-kang, On the gauge invariance and anomaly-free condition of the Wess-Zumino-Witten effective action, Physics Letters B Volume 134, Issues 1–2, 5 January 1984, Pages 67-69 (doi:10.1016/0370-2693(84)90986-9))
H. Kawai, S.-H. H. Tye, Chiral anomalies, effective lagrangians and differential geometry, Physics Letters B Volume 140, Issues 5–6, 14 June 1984, Pages 403-407 (doi:10.1016/0370-2693(84)90780-9)
J. L. Mañes, Differential geometric construction of the gauged Wess-Zumino action, Nuclear Physics B Volume 250, Issues 1–4, 1985, Pages 369-384 (doi:10.1016/0550-3213(85)90487-0)
Tomáš Brauner, Helena Kolešová, Gauged Wess-Zumino terms for a general coset space, Nuclear Physics B Volume 945, August 2019, 114676 (doi:10.1016/j.nuclphysb.2019.114676)
See also
Interpretation as Skyrmion/baryon current:
Jeffrey Goldstone, Frank Wilczek, Fractional Quantum Numbers on Solitons, Phys. Rev. Lett. 47, 986 (1981) (doi:10.1103/PhysRevLett.47.986)
Edward Witten, Current algebra, baryons, and quark confinement, Nuclear Physics B Volume 223, Issue 2, 22 August 1983, Pages 433-444 (doi:10.1016/0550-3213(83)90064-0)
Gregory Adkins, Chiara Nappi, Stabilization of Chiral Solitons via Vector Mesons, Phys. Lett. 137B (1984) 251-256 (spire:194727, doi:10.1016/0370-2693(84)90239-9)
(beware that the two copies of the text at these two sources differ!)
Mannque Rho et al., Introduction, In: Mannque Rho et al. (eds.) The Multifaceted Skyrmion, World Scientific 2016 (doi:10.1142/9710)
Concrete form for -flavor quantum hadrodynamics in 2d:
Concrete form for 2 flavors in 4d:
Concrete form for 2-flavor quantum hadrodynamics in 4d with light vector mesons included (omega-meson and rho-meson):
Ulf-G. Meissner, Ismail Zahed, equation (6) in: Skyrmions in the Presence of Vector Mesons, Phys. Rev. Lett. 56, 1035 (1986) (doi:10.1103/PhysRevLett.56.1035)
Ulf-G. Meissner, Norbert Kaiser, Wolfram Weise, equation (2.18) in: Nucleons as skyrme solitons with vector mesons: Electromagnetic and axial properties, Nuclear Physics A Volume 466, Issues 3–4, 11–18 May 1987, Pages 685-723 (doi:10.1016/0375-9474(87)90463-5)
Ulf-G. Meissner, equation (2.45) in: Low-energy hadron physics from effective chiral Lagrangians with vector mesons, Physics Reports Volume 161, Issues 5–6, May 1988, Pages 213-361 (doi:10.1016/0370-1573(88)90090-7)
Roland Kaiser, equation (12) in: Anomalies and WZW-term of two-flavour QCD, Phys. Rev. D63:076010, 2001 (arXiv:hep-ph/0011377, spire:537600)
Including heavy scalar mesons:
specifically kaons:
Curtis Callan, Igor Klebanov, equation (4.1) in: Bound-state approach to strangeness in the Skyrme model, Nuclear Physics B Volume 262, Issue 2, 16 December 1985, Pages 365-382 (doi10.1016/0550-3213(85)90292-5)
Igor Klebanov, equation (99) of: Strangeness in the Skyrme model, in: D. Vauthrin, F. Lenz, J. W. Negele, Hadrons and Hadronic Matter, Plenum Press 1989 (doi:10.1007/978-1-4684-1336-6)
N. N. Scoccola, D. P. Min, H. Nadeau, Mannque Rho, equation (2.20) in: The strangeness problem: An skyrmion with vector mesons, Nuclear Physics A Volume 505, Issues 3–4, 25 December 1989, Pages 497-524 (doi:10.1016/0375-9474(89)90029-8)
specifically D-mesons:
(…)
specifically B-mesons:
Inclusion of heavy vector mesons:
specifically K*-mesons:
Including electroweak fields:
J. Bijnens, G. Ecker, A. Picha, The chiral anomaly in non-leptonic weak interactions, Physics Letters B Volume 286, Issues 3–4, 30 July 1992, Pages 341-347 (doi:10.1016/0370-2693(92)91785-8)
Gerhard Ecker, Helmut Neufeld, Antonio Pich, Non-leptonic kaon decays and the chiral anomaly, Nuclear Physics B Volume 413, Issues 1–2, 31 January 1994, Pages 321-352 (doi:10.1016/0550-3213(94)90623-8)
Discussion for the full standard model of particle physics:
Last revised on June 13, 2024 at 07:29:56. See the history of this page for a list of all contributions to it.