nLab vector G-space

Contents

Context

Representation theory

Linear algebra

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Rational homotopy theory

Contents

Definition

Let GG be a finite group. We write

(1)GOrbitsCategories G Orbits \;\subset\; Categories

for the orbit category of GG.

Definition

(rational vector G-spaces)

We say that the category of finite-dimensional vector G-spaces is the category of functors from the opposite of the orbit category to the category of finite-dimensional rational vector spaces:

VectorGSpaces fin PSh(GOrbits,VectorSpaces fin) Functors(GOrbits op,VectorSpaces fin) \begin{aligned} Vector G Spaces^{fin}_{\mathbb{Q}} & \coloneqq \; PSh \Big( G Orbits \,,\, VectorSpaces_{\mathbb{Q}}^{\mathrm{fin}} \Big) \\ & \coloneqq \; Functors \Big( G Orbits^{op} \,,\, VectorSpaces_{\mathbb{Q}}^{\mathrm{fin}} \Big) \end{aligned}

Its opposite category we call the category of finite-dimensional dual vector G-spaces:

(2)(VectorGSpaces fin) op PSh(GOrbits op,VectorSpaces fin) =Functors(GOrbits,VectorSpaces fin) \begin{aligned} \big( Vector G Spaces^{fin}_{\mathbb{Q}} \big)^{op} & \simeq \; PSh \Big( G Orbits^{op} \,,\, VectorSpaces_{\mathbb{Q}}^{\mathrm{fin}} \Big) \\ & = \; Functors \Big( G Orbits \,,\, VectorSpaces_{\mathbb{Q}}^{\mathrm{fin}} \Big) \end{aligned}

(using in the first line that forming dual linear maps is an equivalence of categories from finite dimensional vector spaces to their opposite category.)

In generalization of (2), dropping the finiteness condition, we write

(3)DualVectorGSpacesFunctors(GOrbits,VectorSpaces ) DualVector G Spaces \;\coloneqq\; Functors \Big( G Orbits \,,\, VectorSpaces_{\mathbb{Q}} \Big)

The category (3) is denoted Vec G *Vec_G^\ast in (Triantafillou 82).

Properties

Projective objects

Beware that this section uses different notational conventions than the rest of the entry. None of the rest of the entry is necessary for reading this section here.

Notation:


Definition

(T82, Def. 3.1)

For

  • HGH \subset G,

  • V HMod [N(H)/H]V_H \,\in\, Mod_{ \mathbb{Q}[N(H)/H] }

define

V̲ HMod Orb G op V̲ H[Orb G(,G/H)][N(H)/H]V H. \begin{array}{l} \underline{V}_H \;\in\; Mod_{\mathbb{Q}}^{Orb_G^{op}} \\ \underline{V}_H \;\equiv\; \mathbb{Q}\big[ Orb_G(-,G/H) \big] \underset{ \mathbb{Q}[N(H)/H] }{\otimes} V_H \mathrlap{\,.} \end{array}

Remark

Since the Weyl group of HH is (see there) the endomorphism monoid of G/HG/H in the GG-orbit category

N(H)/HOrb G(G/H,G/H) N(H)/H \;\simeq\; {Orb_G}(G/H,G/H) \;\;

we have with Def. canonical isomorphism:

V̲ H(G/H) [Orb G(G/H,G/H)][N(H)/H]V H V H. \begin{array}{ccl} \underline{V}_H(G/H) &\equiv& \mathbb{Q}\big[ Orb_G(G/H,G/H) \big] \underset{ \mathbb{Q}[N(H)/H] }{\otimes} V_H \\ &\simeq& V_H \mathrlap{\,.} \end{array}

Proposition

(T82, Prop. 3.2)
The objects V̲ H\underline{V}_H from Def. are projective in Mod Orb G opMod_{\mathbb{Q}}^{Orb_G^{op}}.

Proof

We need to show that dashed lifts in the following diagrams exist, where pp is an epimorphism: Since plain rational vector spaces are free modules (by the basis theorem), hence projective modules, hence projective objects in Vect, each Orb GOrb_G-component of this diagram separately has such a lift, in particular we may choose a lift f G/H^\widehat{f_{G/H}} at stage G/HG/H:

where we have identified V HV_H in the bottom left via Rem. .

With this local lift in hand, we obtain a global lift by setting:

This is clearly a natural transformation (by the contravariant functoriality) of MM), and it is a lift by naturality of pp and ff:

p G/Kf^ G/K((G/KϕG/H)v H) p G/KM(ϕ)f G/H^((G/HidG/H)v H) =N(ϕ)p G/Hf G/H^((G/HidG/H)v H) =N(ϕ)f G/H((G/HidG/H)v H) =f G/KV̲ H(ϕ)((G/HidG/H)v H) =f G/K((G/KϕG/H)v H). \begin{array}{l} p_{G/K} \circ \widehat{f}_{G/K} \big( (G/K \xrightarrow{\phi} G/H) \otimes v_H \big) \\ \;\equiv\; p_{G/K} \circ M(\phi) \circ \widehat{f_{G/H}} \big( (G/H \xrightarrow{id} G/H) \otimes v_H \big) \\ \;=\; N(\phi) \circ p_{G/H} \circ \widehat{f_{G/H}} \big( (G/H \xrightarrow{id} G/H) \otimes v_H \big) \\ \;=\; N(\phi) \circ f_{G/H} \big( (G/H \xrightarrow{id} G/H) \otimes v_H \big) \\ \;=\; f_{G/K} \circ \underline{V}_H(\phi) \big( (G/H \xrightarrow{id} G/H) \otimes v_H \big) \\ \;=\; f_{G/K} \big( (G/K \xrightarrow{\phi} G/H) \otimes v_H \big) \mathrlap{\,.} \end{array}

Proposition

(T82, Prop. 3.4)
Every projective object PMod Orb G opP \,\in\, Mod_{\mathbb{Q}}^{Orb_G^{op}} is a direct sum of projective generators as in Prop. .

Proof

We make a bunch of choices:

First, in each conjugacy class [H][H] of subgroups GG choose one representative HGH \subset G.

For that HGH \hookrightarrow G, consider the joint span of the images of

P(G/HG/H):P(G/H)P(G/H) P(G/H \twoheadrightarrow G/H') \;\colon\; P(G/H') \to P(G/H)

for all intermediate subgroup-inclusions HHGH \hookrightarrow H' \hookrightarrow G:

0HHim(P(G/HG/H))P(G/H)P(G/H)/HHim(P(G/HG/H))0. 0 \to \underset{ H' \supset H }{ \textstyle{\sum} } im\big( P(G/H \twoheadrightarrow G/H') \big) \hookrightarrow P(G/H) \twoheadrightarrow P(G/H) \big/ \underset{ H' \supset H }{ \textstyle{\sum} } im\big( P(G/H \twoheadrightarrow G/H') \big) \to 0 \,.

On the right we have exhibited the quotient vector space of the inclusion of the joint images on the left (hence the joint cokernel) making a short exact sequence of rational vector spaces.

Since every short exact sequence of vector spaces splits, we may next choose a splitting:

(4)σ H:P(G/H)/HHim(P(G/HG/H))P(G/H), \sigma_H \;\;\colon\;\; P(G/H) \big/ \underset{ H' \supset H }{ \textstyle{\sum} } im\big( P(G/H \twoheadrightarrow G/H') \big) \xhookrightarrow{\phantom{---}} P(G/H) \,,

whose image we denote by

(5)V Hσ(P(G/H)/HHim(P(G/HG/H)))P(G/H). V_H \;\;\;\coloneqq\;\;\; \sigma \Big( P(G/H) \big/ \underset{ H' \supset H }{ \textstyle{\sum} } im\big( P(G/H \twoheadrightarrow G/H') \big) \Big) \xhookrightarrow{\phantom{---}} P(G/H) \,.

(In fact, we need this splitting N(H)/HN(H)/H-equivariantly: Since we are in characteristic zero this follows by the fact that every N(H)/HN(H)/H-representation splits as a direct sum of irreducible representations, and by the first part of Schur's lemma, which says that there are no non-zero maps between distinct such direct summands.)

Via these (images of) chosen splittings (5), we may define a morphism in Mod Orb G opMod_{\mathbb{Q}}^{Orb_G^{op}} as follows, out of the direct sum of their underlined versions from :

(6)p : [H]V̲ H P p G/K : [H][Orb G(G/K,G/H)[N(H)/H]V H] P(G/K) (G/KfG/H)v H P(f)(v H), \array{ p &\colon& \underset{ [H] }{\oplus} \underline{V}_H &\longrightarrow& P \\ p_{G/K} &\colon& \underset{ [H] }{\oplus} \mathbb{Q} \big[ Orb_G(G/K, G/H) \underset{ \mathbb{Q}[N(H)/H] }{\otimes} V_H \big] &\longrightarrow& P(G/K) \\ && \big( G/K \xrightarrow{ f } G/H \big) \,\otimes\, v_H &\mapsto& P(f)(v_H) \,, }

which is manifestly natural in G/KG/K (via contravariant functoriality of PP) and hence well-defined:

Since all the direct summands on the left are projective by Prop. , it is now sufficient to prove that (6) is an isomorphism. Since isomorphisms in functor categories are detected objectwise and since rational vector spaces form a balanced category (see there) for this it is sufficient to show that for all KGK \subset G the morphism p G/Kp_{G/K} (6) is both an epimorphism and a monomorphism.

First to see that that p G/Kp_{G/K} is an epimorphism: To start with, it is clearly surjective onto the summand V KV_K. Hence it is next sufficient to show that given v KP(G/K)v_K \in P(G/K) which is in the image under P(G/KG/H)P(G/K \twoheadrightarrow G/H) of some v^ HP(G/H)\widehat{v}_H \in P(G/H) then it is also in the image of p G/Kp_{G/K}. As before, this is clear for those v^ HV H\widehat{v}_H \in V_H. Hence next, as before, it is sufficient to show this for those v^ H\widehat{v}_H which are in the image under some P(G/HG/H)P(G/H \twoheadrightarrow G/H') of some v HP(G/H)v_{H'} \in P(G/H')… And so on. Since GG is a finite group, this recursive argument eventually terminates with V G=P(G/G)V_G = P(G/G).

Finally, to see that p G/Kp_{G/K} (6) is a monomorphism. It is here (only) that we use the assumption that PP is projective. With the previous point, this implies a lift pp' in the following diagram in Mod Orb G opMod_{\mathbb{Q}}^{Orb_G^{op}}:

Hence if v,wP(G/K)v,w \,\in\, P(G/K) such that p G/K(v)=p G/K(w)p'_{G/K}(v) = p'_{G/K}(w) then p G/Kp G/K(v)=p G/kp G/K(w)p_{G/K} \circ p'_{G/K}(v) = p_{G/k} \circ p'_{G/K}(w) hence v=wv = w, whence each p G/Kp'_{G/K} is injective.

Corollary

(T82, Prop. 3.6) Every object NMod Orb GN \,\in\, Mod_{\mathbb{Q}}^{Orb_G} admits a projective cover in the sense of a projective object [H]V̲ H\underset{[H]}{\oplus} \underline{V}_H and an epimorphism p:[H]V̲ HNp \,\colon\,\underset{[H]}{\oplus} \underline{V}_H \twoheadrightarrow N.

Proof

The construction and verification is verbatim as in the proof of Prop. , omitting only the proof of injectivity in the last step.


Injective objects (1)

We spell out aspects of the discussion of injective objects in the copresheaf category dual to the above discussion of projective objects in the presheaf category but left implicit in Triantafillou 1982, p. 517.

Notation:


Definition

(dual to T82, Def. 3.1)

For

  • HGH \subset G,

  • V HMod [N(H)/H]V^H \,\in\, Mod_{ \mathbb{Q}[N(H)/H] }

define

V̲ HMod Orb G V̲ HMod [N(H)/H]([Orb G(,G/H)],V H). \begin{array}{l} \underline{V}^H \;\in\; Mod_{\mathbb{Q}}^{Orb_G} \\ \underline{V}^H \;\equiv\; Mod_{\mathbb{Q}[N(H)/H]} \Big( \mathbb{Q}\big[ Orb_G(-,G/H) \big] ,\, V^H \Big) \mathrlap{\,.} \end{array}

Proposition

(dual to T82, Prop. 3.4)
Every injective object IMod Orb GI \,\in\, Mod_{\mathbb{Q}}^{Orb_G} is a direct sum of injective generators as in Prop. .

Proof

We make a bunch of choices:

First, in each conjugacy class [H][H] of subgroups GG choose one representative HGH \subset G.

For that HGH \hookrightarrow G, consider the intersection of the kernels of

I(G/HG/H):I(G/H)I(G/H) I(G/H \twoheadrightarrow G/H') \;\colon\; I(G/H) \to I(G/H')

for all intermediate subgroup-inclusions HHGH \hookrightarrow H' \hookrightarrow G,

and an N(H)/HN(H)/H-equivariant splitting

(7)τ H:I(G/H)HHker(I(G/HG/H))V H. \tau_H \;\;\colon\;\; I(G/H) \twoheadrightarrow \underset{ H' \supset H }{ \textstyle{\bigcap} } ker\big( I(G/H \twoheadrightarrow G/H') \big) \,\equiv\, V^H \,.

With this, we may define a morphism in Mod Orb GMod_{\mathbb{Q}}^{Orb_G} as follows,

(8)i : I [H]V̲ H i G/K : I(G/K) [H]Mod [N(H)/H]([Orb G(G/K,G/H),V H]) i K [H]((G/KfG/H)τ HI(f)(i K)), \array{ i &\colon& I &\longrightarrow& \underset{ [H] }{\oplus} \underline{V}^H \\ i_{G/K} &\colon& I(G/K) &\longrightarrow& \underset{ [H] }{\oplus} Mod_{\mathbb{Q}[N(H)/H]} \Big( \mathbb{Q} \big[ Orb_G(G/K, G/H) ,\, V^H \big] \Big) \\ && i_K &\mapsto& \underset{[H]}{\oplus} \Big( \big( G/K \xrightarrow{f} G/H \big) \mapsto \tau_{H} \circ I(f)(i_K) \Big) \,, }

where it is the functoriality of II which implies both that the maps on the right are N(H)/HN(H)/H-equivariant and that this transformation is natural in G/KG/K:

Now to check that this map ii is in fact an isomorphism if II is injective (…)

(…)

Injective objects (2)

The following is another survey of aspects of the injective objects from Triantafillou 1982. This is from a different edit using different notational conventions than the previous subsection. Eventually both subsections should be harmonized and merged.

Example

(restriction of vector GG-spaces to Weyl group representations)

Let HGH \subset G any subgroup. Notice that its Weyl group is the automorphism group of its coset space in the orbit category:

(9)GOrbits(G/H,G/H)Aut GOrbits(G/H)W G(H)N G(H)/H G Orbits \big( G/H \,,\, G/H \big) \;\; \simeq \;\; Aut_{G Orbits} \big( G/H \big) \;\; \simeq \;\; W_G(H) \;\; \coloneqq \;\; N_G(H)/H

This gives a full subcategory-inclusion

BW G(H)i HGOrbits \mathbf{B} W_G(H) \; \overset{\;\;i_H\;\;}{\hookrightarrow} \; G Orbits

of the delooping category of they Weyl group into the orbit category of GG (1), and hence a restriction functor

(10)W G(H)Representations l, fin() *i H *(VectorGSpaces fin) op W_G(H) Representations^{fin}_{l,\mathbb{Q}} \overset{ \;\;\; (-)^\ast \,\circ\, i_H^\ast \;\;\; }{\longleftarrow} \big( Vector G Spaces_{\mathbb{Q}}^{fin} \big)^{op}

or more generally

(11)W G(H)Representations r, fini H *DualVectorGSpaces W_G(H) Representations^{fin}_{r,\mathbb{Q}} \overset{ \;\;\; i_H^\ast \;\;\; }{\longleftarrow} DualVector G Spaces

By the general end-formula for right Kan extension (here), this restriction functor has a right adjoint, given as follows:

Definition

(injective atoms of dual vector GG-spaces)

For HGH \subset G a subgroup and

VW G(H)Representations l, fin V \;\in\; W_G(H) Representations^{fin}_{l,\mathbb{Q}}

a rational finite dimensional left representation of the Weyl group of HH in GG, write

GOrbits I H(V) VectorSpaces G/K W G(H)Representations([GOrbits(G/K,G/H)],V *) \array{ G Orbits & \overset{ I_H(V) }{\longrightarrow} & \mathbb{Q}VectorSpaces \\ G/K &\mapsto& W_G(H) Representations \Big( \mathbb{Q} \big[ G Orbits ( G/K, G/H ) \big] \,,\, V^\ast \Big) }

for the functor from the GG-orbit category to rational vector spaces which assigns to a coset space G/KG/K the vector space of homomorphisms of right actions by the Weyl group (9) from the hom-set GOrbits(G/K,G/H)G Orbits\big(G/K, G/H \big) to the dual vector space equipped with its dual action.

More generally, for

V *W G(H)Representations r, V^\ast \;\in\; W_G(H) Representations_{r,\mathbb{Q}}

set

GOrbits I H(V *) VectorSpaces G/K W G(H)Representations([GOrbits(G/K,G/H)],V *) \array{ G Orbits & \overset{ I_H(V^\ast) }{\longrightarrow} & \mathbb{Q}VectorSpaces \\ G/K &\mapsto& W_G(H) Representations \Big( \mathbb{Q} \big[ G Orbits ( G/K, G/H ) \big] \,,\, V^\ast \Big) }

This construction extends to a functor right adjoint to the restriction (10):

W G(H)Representations I H() *i H *DualVectorGSpaces W_G(H) Representations_{\mathbb{Q}} \underoverset{ \underset{ \;\;\; I_H \;\;\; }{ \longrightarrow } }{ \overset{ \;\;\; (-)^\ast \,\circ\, i_H^\ast \;\;\; }{\longleftarrow} } {\bot} DualVector G Spaces

(Triantafillou 82, (4.1), Golasinski 97a, Lemma 1.1, Scull 08, Def. 2.2, Lemma 2.3)

Proposition

\,

(i) The objects of the form I H(V *)I_H(V^\ast) (Def. ) are injective objects in dual vector G-spaces (Def. ).

(ii) Every injective dual vector GG-space is a direct sum of objects of this form, specifically (see Def. below):

V̲DualVectorGSpacesis injectiveV̲[HG] conjI H(KHker(V̲(G/H)V̲(G/HG/K)V̲(G/K))) \underline{V} \;\in\; DualVector G Spaces \;\;\; \text{is injective} \;\;\;\;\;\;\; \Leftrightarrow \;\;\;\;\;\;\; \underline{V} \;\simeq\; \underset{ \big[ H \subsetneqq G \big]_{conj} }{\bigoplus} \, I_H \left( \underset{ K \supset H }{\bigcap} ker \big( \underline{V}(G/H) \overset{ \underline{V}(G/H \to G/K) }{\longrightarrow} \underline{V}(G/K) \big) \right)

(Triantafillou 82, Section 3 and p. 10, Scull 08, Lemma 2.4, Prop. 2.5)

Example

(equivariant PL de Rham complex in injective dual vector GG-space)

Let SGSimplicialSetsS \in G SimplicialSets a simplicial set equipped with GG-action, say that the equivariant PL de Rham complex is the functor on the orbit category

GOrbits Ω PLdR (Maps(,X) G) dgcAlgebras G/H Ω PLdR (X H) \array{ G Orbits & \overset{ \Omega^\bullet_{PLdR} \big( Maps(-,X)^G \big) }{\longrightarrow} & dgcAlgebras \\ G/H &\mapsto& \Omega^\bullet_{PLdR} \big( X^H \big) }

which to a coset space G/HG/H assigns the PL de Rham complex of the HH-fixed locus X HXX^H \subset X.

Then the underlying dual vector G-space

GOrbits Ω PLdR (Maps(,X) G) dgcAlgebras VectorSpaces \array{ G Orbits & \overset{ \Omega^\bullet_{PLdR} \big( Maps(-,X)^G \big) }{\longrightarrow} & dgcAlgebras &\overset{}{\longrightarrow}& VectorSpaces_{\mathbb{Q}} }

is an injective object (degreewise, in fact).

(Triantafillou 82, Prop. 4.3)

(also Scull 08, Lemma 5.2)

Definition

(injective envelope of dual vector G-spaces)

For V̲DualVectorGSpaces\underline{V} \in DualVector G Spaces (3), its injective envelope is

[HG] conjI H(KHker(V̲(G/H)V̲(G/HG/K)V̲(G/K))), \underset{ \big[ H \subset G \big]_{conj} }{\bigoplus} \, I_H \left( \underset{ K \supsetneqq H }{\bigcap} ker \big( \underline{V}(G/H) \overset{ \underline{V}(G/H \to G/K) }{\longrightarrow} \underline{V}(G/K) \big) \right) \,,

where

  1. the direct sum is over conjugacy classes of subgroups, with HGH \subset G on the right any one representative of its conjugacy class,

  2. for H=GH = G the argument of I HI_H is taken to be all of V̲(G/G)\underline{V}(G/G),

  3. I H()I_H(-) is the injective atom construction from Def. .

(Triantafillou 82, p. 10, Scull 01, Prop. 7.34, Scull 08, Def. 2.6)

Lemma

(tensor product of injective dual vector GG-spaces)

The object-wise tensor product of two finite-dimensional injective dual vector G-spaces (Def. ) is again injective.

This is proven as Golasinski 97b, Lemma 3.6 (use Golasinski 97b, Remark 1.2 to see that the Lemma does apply to the ordinary tensor product of finite-dimensional vector spaces).

Beware that incorrect versions of this statement had been circulating; for discussion of the literature see Golasinski 97b, p. 3 and Scull 01, Prop. 7.36

Examples

Over G= 2G = \mathbb{Z}_2

Example

(orbit category of Z/2Z)

For equivariance group the cyclic group of order 2:

G 2/2. G \;\coloneqq\; \mathbb{Z}_2 \;\coloneqq\; \mathbb{Z}/2\mathbb{Z} \,.

the orbit category looks like this:

(12) 2Orbits={ 2/1 AAAAA 2/ 2 Aut= 2 Aut=1} \mathbb{Z}_2 Orbits \;=\; \left\{ \array{ \mathbb{Z}_2/1 & \overset{ \phantom{AAAAA} }{ \longrightarrow } & \mathbb{Z}_2/\mathbb{Z}_2 \\ Aut = \mathbb{Z}_2 && Aut = 1 } \right\}

i.e.:

2Orbits( 2/ 2, 2/ 2)1 2Orbits( 2/1, 2/ 2)* 2Orbits( 2/ 2, 2/1) 2Orbits( 2/1, 2/1) 2 \begin{aligned} \mathbb{Z}_2 Orbits \big( \mathbb{Z}_2/\mathbb{Z}_2 \,,\, \mathbb{Z}_2/\mathbb{Z}_2 \big) \;\simeq\; 1 \\ \mathbb{Z}_2 Orbits \big( \mathbb{Z}_2/1 \,,\, \mathbb{Z}_2/\mathbb{Z}_2 \big) \;\simeq\; \ast \\ \mathbb{Z}_2 Orbits \big( \mathbb{Z}_2/\mathbb{Z}_2 \,,\, \mathbb{Z}_2/1 \big) \;\simeq\; \varnothing \\ \mathbb{Z}_2 Orbits \big( \mathbb{Z}_2/1 \,,\, \mathbb{Z}_2/1 \big) \;\simeq\; \mathbb{Z}_2 \end{aligned}

Write

1,1 sgn 2Representations \mathbf{1}, \mathbf{1}_{sgn} \;\in\; \mathbb{Z}_2 Representations

for the two irreducible representations (the trivial representation and the sign representation, respectively) of the Weyl group W 2(1)= 2W_{\mathbb{Z}_2}(1) = \mathbb{Z}_2.

Their induced injective dual vector 2\mathbb{Z}_2-spaces, according to Def. , are:

I 1(1): 2/1 2Reps([ 2Orbits( 2/1, 2/1)]11 sgn,1) 1 2/ 2 2Reps([ 2Orbits( 2/ 2, 2/1)]0,1) 0 I_1(\mathbf{1}) \;\; \colon \;\; \;\;\;\;\; \array{ \mathbb{Z}_2/1 &\mapsto& \mathbb{Z}_2 Reps \Big( \underset{ \simeq \, \mathbf{1} \oplus \mathbf{1}_{sgn} }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/1, \mathbb{Z}_2/1 ) \big] } } \,,\, \mathbf{1} \Big) & \simeq & \mathbf{1} \\ \big\downarrow && \\ \mathbb{Z}_2/\mathbb{Z}_2 &\mapsto& \mathbb{Z}_2 Reps \Big( \underset{ \simeq \, 0 }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/\mathbb{Z}_2, \mathbb{Z}_2/1 ) \big] } } \,,\, \mathbf{1} \Big) & \simeq & 0 }

and

I 1(1 sgn): 2/1 2Reps([ 2Orbits( 2/1, 2/1)]11 sgn,1 sgn) 1 sgn 2/ 2 2Reps([ 2Orbits( 2/ 2, 2/1)]0,1 sgn) 0 I_1(\mathbf{1}_{sgn}) \;\; \colon \;\; \;\;\;\;\; \array{ \mathbb{Z}_2/1 &\mapsto& \mathbb{Z}_2 Reps \Big( \underset{ \simeq \, \mathbf{1} \oplus \mathbf{1}_{sgn} }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/1, \mathbb{Z}_2/1 ) \big] } } \,,\, \mathbf{1}_{sgn} \Big) & \simeq & \mathbf{1}_{sgn} \\ \big\downarrow && \\ \mathbb{Z}_2/\mathbb{Z}_2 &\mapsto& \mathbb{Z}_2 Reps \Big( \underset{ \simeq \, 0 }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/\mathbb{Z}_2, \mathbb{Z}_2/1 ) \big] } } \,,\, \mathbf{1}_{sgn} \Big) & \simeq & 0 }

Similarly, write

11Representations \mathbf{1} \;\in\; 1 Representations

for the unique irrep of the Weyl group W 2( 2)=1W_{\mathbb{Z}_2}(\mathbb{Z}_2) = 1.

Its induced injective dual vector 2\mathbb{Z}_2-spaces, according to Def. , is:

I 2(1): 2/1 1Reps([ 2Orbits( 2/1, 2/ 2)]1,1) 1 id 2/ 2 1Reps([ 2Orbits( 2/ 2, 2/ 2)]1,1) 1 I_{\mathbb{Z}_2}(\mathbf{1}) \;\; \colon \;\; \;\;\;\;\; \array{ \mathbb{Z}_2/1 &\mapsto& 1 Reps \Big( \underset{ \simeq \, \mathbf{1} }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/1, \mathbb{Z}_2/\mathbb{Z}_2 ) \big] } } \,,\, \mathbf{1} \Big) & \simeq & \mathbf{1} \\ \big\downarrow && && \big\downarrow{}^{\mathrlap{\mathrm{id}}} \\ \mathbb{Z}_2/\mathbb{Z}_2 &\mapsto& 1 Reps \Big( \underset{ \simeq \, \mathbf{1} }{ \underbrace{ \mathbb{Q} \big[ \mathbb{Z}_2 Orbits( \mathbb{Z}_2/\mathbb{Z}_2, \mathbb{Z}_2/\mathbb{Z}_2 ) \big] } } \,,\, \mathbf{1} \Big) & \simeq & \mathbf{1} }

References

Last revised on November 29, 2023 at 13:18:36. See the history of this page for a list of all contributions to it.