nLab E₁₀

Contents

Context

Exceptional structures

Group Theory

Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Contents

Idea

A hyperbolic Kac-Moody Lie algebra in the E-series

Properties

Maximal compact subalgebra

In contrast to 𝔢 10(10)\mathfrak{e}_{10(10)} itself, its “maximal compact subalgebra” 𝔨 10(10)\mathfrak{k}_{10(10)} has non-trivial finite dimensional representations (Kleinschmidt, Nicolai & Vigano 2020, KKLN22).

Among these is in particular a spinor representation 32\mathbf{32} and a vector-spinor representation 320\mathbf{320}

32,320Rep fdim(𝔨 10(10)) \mathbf{32} ,\, \mathbf{320} \;\in\; Rep^{fdim}_{\mathbb{R}}\big(\mathfrak{k}_{10(10)}\big)

akin to the familiar reps of 𝔰𝔬(10)\mathfrak{so}(10) of the same name/dimension [deBuyl, Henneaux & Paulot 2005 §8, Kleinschmidt & Nicolai 2006].

Remarkably, the symmetrized tensor product of this spinorial 32\mathbf{32} with itself decomposes as a 1-dimensional trivial representation with a 527-dimensional irrep:

32 sym321527Rep fdim(𝔨 10(10)). \mathbf{32} \otimes_{sym} \mathbf{32} \;\; \simeq \;\; \mathbf{1} \oplus \mathbf{527} \;\;\;\;\; \in \;\; Rep^{fdim}_{\mathbb{R}}\big( \mathfrak{k}_{10(10)} \big) \,.

(Damour, Kleinschmidt & Nicolai 2006 p 37).

As U-duality group of 1d M-theory

E 10E_{10} is conjectured (e.g. Nicolai 08) to be the U-duality group (see there) of M-theory compactified to 1 dimension (see also F/M-theory on elliptically fibered Calabi-Yau 5-folds).

supergravity gauge group (split real form)T-duality group (via toroidal KK-compactification)U-dualitymaximal gauged supergravity
SL(2,)SL(2,\mathbb{R})1 SL ( 2 , ) SL(2,\mathbb{Z}) S-dualityD=10 type IIB supergravity
SL(2,)×(2,\mathbb{R}) \times O(1,1) 2\mathbb{Z}_2 SL ( 2 , ) SL(2,\mathbb{Z}) × 2\times \mathbb{Z}_2D=9 supergravity
SU(3)×\times SU(2)SL(3,)×SL(2,)(3,\mathbb{R}) \times SL(2,\mathbb{R})O(2,2;)O(2,2;\mathbb{Z})SL(3,)×SL(2,)SL(3,\mathbb{Z})\times SL(2,\mathbb{Z})D=8 supergravity
SU(5)SL(5,)SL(5,\mathbb{R})O(3,3;)O(3,3;\mathbb{Z})SL(5,)SL(5,\mathbb{Z})D=7 supergravity
Spin(10)Spin(5,5)Spin(5,5)O(4,4;)O(4,4;\mathbb{Z})O(5,5,)O(5,5,\mathbb{Z})D=6 supergravity
E₆E 6(6)E_{6(6)}O(5,5;)O(5,5;\mathbb{Z})E 6(6)()E_{6(6)}(\mathbb{Z})D=5 supergravity
E₇E 7(7)E_{7(7)}O(6,6;)O(6,6;\mathbb{Z})E 7(7)()E_{7(7)}(\mathbb{Z})D=4 supergravity
E₈E 8(8)E_{8(8)}O(7,7;)O(7,7;\mathbb{Z})E 8(8)()E_{8(8)}(\mathbb{Z})D=3 supergravity
E₉E 9(9)E_{9(9)}O(8,8;)O(8,8;\mathbb{Z})E 9(9)()E_{9(9)}(\mathbb{Z})D=2 supergravityE₈-equivariant elliptic cohomology
E₁₀E 10(10)E_{10(10)}O(9,9;)O(9,9;\mathbb{Z})E 10(10)()E_{10(10)}(\mathbb{Z})
E₁₁E 11(11)E_{11(11)}O(10,10;)O(10,10;\mathbb{Z})E 11(11)()E_{11(11)}(\mathbb{Z})

(Hull-Townsend 94, table 1, table 2)

References

General

Lecture notes:

The fact that every simply laced hyperbolic Kac-Moody algebra is a sub Lie algebra of E 10E_{10}:

See also:

Relation to supergravity

Discussion of a 1d sigma-model on E 10/K(E 10)E_{10}/K(E_{10}) as U-duality-covariant formuation of 11D supergravity/M-theory:

For bosonic degrees of freedom:

and for fermionic degrees of freedom

and application to supersymmetric quantum cosmology:

Review:

Discussion of phenomenology:

See also:

Maximal compact subalgebra

More on the maximal compact subalgebras of E9 and E10, respectively, and their finite-dimensional linear representations:

Last revised on November 5, 2024 at 14:36:41. See the history of this page for a list of all contributions to it.