# nLab E₁₀

Contents

## Philosophy

#### Group Theory

group theory

Classical groups

Finite groups

Group schemes

Topological groups

Lie groups

Super-Lie groups

Higher groups

Cohomology and Extensions

Related concepts

#### Lie theory

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

$\infty$-Lie groupoids

$\infty$-Lie groups

$\infty$-Lie algebroids

$\infty$-Lie algebras

# Contents

## Idea

A hyperbolic Kac-Moody Lie algebra in the E-series

## Properties

### As U-duality group of 1d M-theory

$E_{10}$ is conjectured (e.g. Nicolai 08) to be the U-duality group (see there) of M-theory compactified to 1 dimension (see also F/M-theory on elliptically fibered Calabi-Yau 5-folds).

supergravity gauge group (split real form)T-duality group (via toroidal KK-compactification)U-dualitymaximal gauged supergravity
$SL(2,\mathbb{R})$1$SL(2,\mathbb{Z})$ S-dualityD=10 type IIB supergravity
SL$(2,\mathbb{R}) \times$ O(1,1)$\mathbb{Z}_2$$SL(2,\mathbb{Z})$ $\times \mathbb{Z}_2$D=9 supergravity
SU(3)$\times$ SU(2)SL$(3,\mathbb{R}) \times SL(2,\mathbb{R})$$O(2,2;\mathbb{Z})$$SL(3,\mathbb{Z})\times SL(2,\mathbb{Z})$D=8 supergravity
SU(5)$SL(5,\mathbb{R})$$O(3,3;\mathbb{Z})$$SL(5,\mathbb{Z})$D=7 supergravity
Spin(10)$Spin(5,5)$$O(4,4;\mathbb{Z})$$O(5,5,\mathbb{Z})$D=6 supergravity
E₆$E_{6(6)}$$O(5,5;\mathbb{Z})$$E_{6(6)}(\mathbb{Z})$D=5 supergravity
E₇$E_{7(7)}$$O(6,6;\mathbb{Z})$$E_{7(7)}(\mathbb{Z})$D=4 supergravity
E₈$E_{8(8)}$$O(7,7;\mathbb{Z})$$E_{8(8)}(\mathbb{Z})$D=3 supergravity
E₉$E_{9(9)}$$O(8,8;\mathbb{Z})$$E_{9(9)}(\mathbb{Z})$D=2 supergravityE₈-equivariant elliptic cohomology
E₁₀$E_{10(10)}$$O(9,9;\mathbb{Z})$$E_{10(10)}(\mathbb{Z})$
E₁₁$E_{11(11)}$$O(10,10;\mathbb{Z})$$E_{11(11)}(\mathbb{Z})$

## References

### General

Lecture notes include

The fact that every simply laced hyperbolic Kac-Moody algebra is a sub Lie algebra of $E_{10}$ is due to

• Sankaran Viswanath, Embeddings of hyperbolic Kac-Moody algebras into $E_{10}$ (pdf)

### Relation to supergravity

Discussion of $E_{10}$ as U-duality of supergravity/M-theory:

The case of E₁₀ is discussed for bosonic degrees of freedom in

and for fermionic degrees of freedom in supersymmetric quantum cosmology in

Review includes

Discussion of phenomenology:

Last revised on July 17, 2024 at 11:26:36. See the history of this page for a list of all contributions to it.