exceptional structures, exceptional isomorphisms
exceptional finite rotation groups:
and Kac-Moody groups:
exceptional Jordan superalgebra,
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
-Lie groupoids
-Lie groups
-Lie algebroids
-Lie algebras
A hyperbolic Kac-Moody Lie algebra in the E-series
In contrast to itself, its “maximal compact subalgebra” has non-trivial finite dimensional representations (Kleinschmidt, Nicolai & Vigano 2020, KKLN22).
Among these is in particular a spinor representation and a vector-spinor representation
akin to the familiar reps of of the same name/dimension [deBuyl, Henneaux & Paulot 2005 §8, Kleinschmidt & Nicolai 2006].
Remarkably, the symmetrized tensor product of this spinorial with itself decomposes as a 1-dimensional trivial representation with a 527-dimensional irrep:
(Damour, Kleinschmidt & Nicolai 2006 p 37).
is conjectured (e.g. Nicolai 08) to be the U-duality group (see there) of M-theory compactified to 1 dimension (see also F/M-theory on elliptically fibered Calabi-Yau 5-folds).
Lecture notes:
The fact that every simply laced hyperbolic Kac-Moody algebra is a sub Lie algebra of :
See also:
Hermann Nicolai, Thomas Fischbacher: Low Level Representations for and , in Kac-Moody Lie Algebras and Related Topics [arXiv:hep-th/0301017, doi:10.1090/conm/343]
Thomas Fischbacher: The structure of at higher levels – a first algorithmic approach, JHEP 0508:012 (2005) [arXiv:hep-th/0504230, doi:10.1088/1126-6708/2005/08/012]
Discussion of a 1d sigma-model on as U-duality-covariant formuation of 11D supergravity/M-theory:
For bosonic degrees of freedom:
Thibault Damour, Marc Henneaux, Hermann Nicolai: and a “small tension expansion” of M theory, Phys. Rev. Lett. 89 221601 (2002) [arXiv:hep-th/0207267, doi:10.1103/PhysRevLett.89.221601]
Axel Kleinschmidt, Hermann Nicolai: and invariant supergravity, JHEP 0407,
041 (2004) [arXiv:hep-th/0407101, doi:10.1088/1126-6708/2004/07/041]
Thibault Damour, Hermann Nicolai: Eleven dimensional supergravity and the sigma-model at low levels, in Proceedings of the XXV International Colloquium on Group Theoretical Methods in Physics, 2-6 August 2004, Cocoyoc, Mexico, Routledge (2005) 93-111 [arXiv:hep-th/0410245, ISBN:9780750310086]
Axel Kleinschmidt, Hermann Nicolai: Cosmology, JHEP 01 (2006) 137 [arXiv:hep-th/0511290, doi:10.1088/1126-6708/2006/01/137]
(cosmological solutions)
Marc Henneaux, Mauricio Leston, Daniel Persson, Philippe Spindel: Geometric Configurations, Regular Subalgebras of E10 and M-Theory Cosmology, JHEP 0610:021 (2006) [arXiv:hep-th/0606123, doi:10.1088/1126-6708/2006/10/021]
(cosmological solutions)
Marc Henneaux, Ella Jamsin, Axel Kleinschmidt, Daniel Persson: On the /Massive Type IIA Supergravity Correspondence, Phys. Rev. D 79 (2009) 045008 [arXiv:0811.4358, doi:10.1103/PhysRevD.79.045008]
(relation to massive type IIA string theory)
Thibault Damour, Hermann Nicolai: Higher order M theory corrections and the Kac-Moody algebra , Class. Quant. Grav. 22 (2005) 2849-2880 [arXiv:hep-th/0504153, doi:10.1088/0264-9381/22/14/003]
(relating to higher curvature corrections)
Thibault Damour, Axel Kleinschmidt, Hermann Nicolai: Constraints and the Coset Model, Class. Quant. Grav. 24 (2007) 6097-6120 [arXiv:0709.2691, doi:10.1088/0264-9381/24/23/025]
Eric A. Bergshoeff, Olaf Hohm, Axel Kleinschmidt, Hermann Nicolai, Teake A. Nutma, Jakob Palmkvist: and Gauged Maximal Supergravity, JHEP 0901:020 (2009) [doi:10.1088/1126-6708/2009/01/020, arXiv:0810.5767]
(relation to D=3 gauged supergravity)
Thibault Damour, Axel Kleinschmidt, Hermann Nicolai: Sugawara-type constraints in hyperbolic coset models, Commun. Math. Phys. 302 (2011) 755-788 [arXiv:0912.3491, doi:10.1007/s00220-011-1188-y]
Axel Kleinschmidt, Hermann Nicolai: The Wheeler-DeWitt operator at low levels, J. High Energ. Phys. 2022 92 (2022) [arXiv:2202.12676, doi:10.1007/JHEP04(2022)092]
(relation to the Wheeler-DeWitt equation for 11D supergravity)
and for fermionic degrees of freedom
S. de Buyl, Marc Henneaux, L. Paulot: Extended Invariance of 11-Dimensional Supergravity, Journal of High Energy Physics 2006 JHEP02 (2006) [arXiv:hep-th/0512292, doi:10.1088/1126-6708/2006/02/056]
Axel Kleinschmidt, Hermann Nicolai: IIA and IIB spinors from , Phys. Lett.B 637 (2006) 107-112 [arXiv:hep-th/0603205, doi:10.1016/j.physletb.2006.04.007]
Thibault Damour, Axel Kleinschmidt, Hermann Nicolai: , Supergravity and Fermions, JHEP 0608:046 (2006) [arXiv:hep-th/0606105, doi:10.1088/1126-6708/2006/08/046]
Axel Kleinschmidt: Unifying R-symmetry in M-theory, in New Trends in Mathematical Physics, Springer (2009) 389-401 [arXiv:hep-th/0703262, doi:10.1007/978-90-481-2810-5_26]
and application to supersymmetric quantum cosmology:
Review:
Luca Carlevaro, part III of: Three approaches to M-theory, PhD thesis (2006) [hdl:123456789/16186, pdf, spire:1253257]
Axel Kleinschmidt, Hermann Nicolai: Maximal supergravities and the model, International Journal of Modern Physics D 15 10 (2006) 1619-1642 [doi:10.1142/S0218271806009005]
Hermann Nicolai: Wonders of and , talk at Wonders of Gauge Theory and Supergravity, IHP Paris (2008) [pdf]
Hermann Nicolai, On Exceptional Geometry and Supergravity, talk at Gravitation, Solitons and Symmetries [pdf]
Hermann Nicolai: Supergravity, and beyond [arXiv:2409.18656]
Discussion of phenomenology:
Axel Kleinschmidt, Hermann Nicolai: Standard model fermions and , Physics Letters B
747 (2015) 251-254 [arXiv:1504.01586, doi:10.1016/j.physletb.2015.06.005]
Krzysztof A. Meissner, Hermann Nicolai, Standard Model Fermions and Infinite-Dimensional R-Symmetries, Phys. Rev. Lett. 121 091601 (2018) [arXiv:1804.09606, doi:10.1103/PhysRevLett.121.091601]
Krzysztof A. Meissner, Hermann Nicolai: Planck Mass Charged Gravitino Dark Matter, Phys. Rev. D 100 035001 (2019) [arXiv:1809.01441]
See also:
More on the maximal compact subalgebras of E9 and E10, respectively, and their finite-dimensional linear representations:
Axel Kleinschmidt, Hermann Nicolai, Adriano Viganò: On spinorial representations of involutory subalgebras of Kac-Moody algebras, In: Partition Functions and Automorphic Forms, Moscow Lectures 5, Springer (2020) [arXiv:1811.11659, doi:10.1007/978-3-030-42400-8_4]
Sophie de Buyl, Marc Henneaux, Louis Paulot: Hidden Symmetries and Dirac Fermions, Class. Quant. Grav. 22 (2005) 3595-3622 [arXiv:hep-th/0506009, doi:10.1088/0264-9381/22/17/018]
Axel Kleinschmidt, Hermann Nicolai: IIA and IIB spinors from , Phys. Lett. B 637 (2006) 107-112 [arXiv:hep-th/0603205, doi:10.1016/j.physletb.2006.04.007]
Axel Kleinschmidt, Hermann Nicolai, Jakob Palmkvist: from , Journal of High Energy Physics 2007 JHEP06 (2007) [arXiv:hep-th/0611314, doi:10.1088/1126-6708/2007/06/051]
Axel Kleinschmidt, Hermann Nicolai: On higher spin realizations of , J. High Energ. Phys. 2013 41 (2013) [arXiv:1307.0413, doi:10.1007/JHEP08(2013)041]
Last revised on December 9, 2024 at 08:19:09. See the history of this page for a list of all contributions to it.