nLab E₉

Contents

Context

Exceptional structures

Group Theory

Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Contents

Idea

One of the affine Kac-Moody groups in the E-series.

Properties

Representations of maximal compact subalgebra

In contrast to the full affine Lie algebra 𝔢 9(9)\mathfrak{e}_{9(9)}, the “maximal compact subalgebra” 𝔨 9(9)Lie(K(E 9(9)))\mathfrak{k}_{9(9)} \,\coloneqq\, Lie\big(K(E_{9(9)})\big) has non-trivial finite-dimensional representations [Nicolai & Samtleben 2005, KKLN22].

Specifically, under the restriction (“branching”) of the basic representation of 𝔢 9(9)\mathfrak{e}_{9(9)} along the inclusion 𝔨 9(9)𝔢 9(9)\mathfrak{k}_{9(9)} \hookrightarrow \mathfrak{e}_{9(9)} the first (namely: parabolic level zero) 𝔨\mathfrak{k}-irrep summand has dimension 2 rk(𝔢 8)=2562^{rk(\mathfrak{e}_8)} = 256. [König 2024, top of p 38 and pp 41-42].

As U-duality group of 2d supergravity

E 9E_9 is the U-duality group (see there) of 11-dimensional supergravity compactified to 2 dimensions.

supergravity gauge group (split real form)T-duality group (via toroidal KK-compactification)U-dualitymaximal gauged supergravity
SL(2,)SL(2,\mathbb{R})1 SL ( 2 , ) SL(2,\mathbb{Z}) S-dualityD=10 type IIB supergravity
SL(2,)×(2,\mathbb{R}) \times O(1,1) 2\mathbb{Z}_2 SL ( 2 , ) SL(2,\mathbb{Z}) × 2\times \mathbb{Z}_2D=9 supergravity
SU(3)×\times SU(2)SL(3,)×SL(2,)(3,\mathbb{R}) \times SL(2,\mathbb{R})O(2,2;)O(2,2;\mathbb{Z})SL(3,)×SL(2,)SL(3,\mathbb{Z})\times SL(2,\mathbb{Z})D=8 supergravity
SU(5)SL(5,)SL(5,\mathbb{R})O(3,3;)O(3,3;\mathbb{Z})SL(5,)SL(5,\mathbb{Z})D=7 supergravity
Spin(10)Spin(5,5)Spin(5,5)O(4,4;)O(4,4;\mathbb{Z})O(5,5,)O(5,5,\mathbb{Z})D=6 supergravity
E₆E 6(6)E_{6(6)}O(5,5;)O(5,5;\mathbb{Z})E 6(6)()E_{6(6)}(\mathbb{Z})D=5 supergravity
E₇E 7(7)E_{7(7)}O(6,6;)O(6,6;\mathbb{Z})E 7(7)()E_{7(7)}(\mathbb{Z})D=4 supergravity
E₈E 8(8)E_{8(8)}O(7,7;)O(7,7;\mathbb{Z})E 8(8)()E_{8(8)}(\mathbb{Z})D=3 supergravity
E₉E 9(9)E_{9(9)}O(8,8;)O(8,8;\mathbb{Z})E 9(9)()E_{9(9)}(\mathbb{Z})D=2 supergravityE₈-equivariant elliptic cohomology
E₁₀E 10(10)E_{10(10)}O(9,9;)O(9,9;\mathbb{Z})E 10(10)()E_{10(10)}(\mathbb{Z})
E₁₁E 11(11)E_{11(11)}O(10,10;)O(10,10;\mathbb{Z})E 11(11)()E_{11(11)}(\mathbb{Z})

(Hull-Townsend 94, table 1, table 2)

References

General

(…)

As U-duality symmetry

Discussion of E 9E_9 in view of U-duality-symmetry of D=11 supergravity reduced to D=2D=2:

On finite-dimensional representations of the maximal compact subalgebra 𝔨=Lie(K(E 9))\mathfrak{k} = Lie\big(K(E_9)\big):

On BPS states of D=11 supergravity via the representation theory of E 9E_9:

On E 9E_9-exceptional field theory-formulation of D=11 supergravity:

Maximal compact subalgebra

On the maximal compact subalgebras of E9 (and E10) and their finite-dimensional linear representations:

Last revised on November 5, 2024 at 16:26:46. See the history of this page for a list of all contributions to it.