fields and particles in particle physics
and in the standard model of particle physics:
matter field fermions (spinors, Dirac fields)
flavors of fundamental fermions in the standard model of particle physics: | |||
---|---|---|---|
generation of fermions | 1st generation | 2nd generation | 3d generation |
quarks () | |||
up-type | up quark () | charm quark () | top quark () |
down-type | down quark () | strange quark () | bottom quark () |
leptons | |||
charged | electron | muon | tauon |
neutral | electron neutrino | muon neutrino | tau neutrino |
bound states: | |||
mesons | light mesons: pion () ρ-meson () ω-meson () f1-meson a1-meson | strange-mesons: ϕ-meson (), kaon, K*-meson (, ) eta-meson () charmed heavy mesons: D-meson (, , ) J/ψ-meson () | bottom heavy mesons: B-meson () ϒ-meson () |
baryons | nucleons: proton neutron |
(also: antiparticles)
hadrons (bound states of the above quarks)
minimally extended supersymmetric standard model
bosinos:
dark matter candidates
Exotica
In gauge theory the configuration space/phase space is not in general a smooth space, but a smooth groupoid: the gauge transformations between gauge fields are the morphisms of this groupoid.
The infinitesimal approximation to this smooth groupoid is a Lie algebroid. The dg-algebra of functions on this is called the BRST complex of the gauge theory. It contains in degree-0 the (duals to) the gauge fields and in degree-1 the cotangents to the gauge transformations. These degree-1 elements that appear here alongside the physical fields in degree 0 are called ghost fields in the physics literature.
If there are higher gauge transformations “gauge-of-gauge transformations” then the BRST complex has generators in higher degree, too, the cotangents to these higher gauge transformations. These are then called ghost-of-ghost fields.
For more details and further pointers see at BRST complex and in particular at BV-BRST formalism.
Last revised on December 9, 2017 at 15:05:57. See the history of this page for a list of all contributions to it.