nLab
ω-meson

Contents

Context

Fields and quanta

field (physics)

standard model of particle physics

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadron (bound states of the above quarks)

solitons

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In nuclear physics, specifically in the chiral perturbation theory of quantum chromodynamics, the omega-meson is the isospin-singlet vector meson field in the first-generation of fermions, i.e. a bound state of an up quark and a down quark (a light meson), the chiral partner of the f1-meson:


flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

Properties

Nuclear binding

Together with the sigma-meson the omega is responsible for most of the long-range interaction between baryons, exhibiting the residual strong nuclear force between them (as modeled by Walecka model and quantum hadrodynamics).

Couplings

The ω\omega-3π3 \pi-coupling

The interaction term of the omega-meson three pions is, in the Lagrangian density, given by contraction

ω μB μ \omega_\mu B^\mu

with the chirally anomalous baryon current Btr((U 1dU)(U 1dU)(U 1dU))B \coloneqq \star tr( (U^{-1} d U) \wedge (U^{-1} d U) \wedge (U^{-1} d U) ), with UU is the exponential of the pion-field (Adkins-Nappi 84, (1) and (2), Park-Vento 09, (5.5.43) and above (5.5.50)).

This gives a decay mode

ωπ ++π +π 0 \omega \to \pi^+ + \pi^- + \pi^0

(the “charged decay”, e.g. Rudaz 84, (2)).

Or rather, this is the direct (contact term) decay. The net process ω3π\omega \to 3 \pi is dominated by the successive decay

ωρ+π(2π)+π \omega \to \rho + \pi \to (2 \pi) + \pi

The ω\omega-ρ\rho-π\pi-coupling

Then there is an ω-ρ-π-coupling given by the anomalous part of the chiral WZW-term:

g ωρπϵ μνκλ μω ν κρ λπ g_{\omega \rho \pi} \epsilon^{\mu \nu \kappa \lambda} \partial_\mu \omega_\nu \partial_\kappa \rho_\lambda \cdot \pi

(e.g. Renard 69, Meissner-Kaiser-Weise 87, (2.18) Volkov-Ebert-Nagy 97, p. 12, Guetta-Singer 00, (1), Kaiser 00, (12), GKSY 03, (1) Gudino-Sanchez 12, (1))

The radiative decays

Then there is the “neutral decay”

ωπ 0+γ \omega \to \pi^0 + \gamma

seen in experiment as

ω π 0+γ γ+γ+γ \begin{aligned} \omega & \to \pi^0 + \gamma \\ & \to \gamma + \gamma + \gamma \end{aligned}

(Nambu 57, (a), FFHNR 67, Dolinsky et al. 89, (5))

References

General

The ω\omega-meson was first postulated by

as reviewed in

See also:

See also

Phenomenology:

  • Cheng-Qun Pang, Ya-Rong Wang, Jing-Fu Hu, Tian-Jie Zhang, Xiang Liu, Study of the ω\omega meson family and newly observed ω\omega-like state X(2240)X(2240) (arXiv:1910.12408)

  • M. K. Volkov, A. A. Pivovarov, K. Nurlan, On the mixing angle of the vector mesons ω(782)\omega(782) and ϕ(1020)\phi(1020) (arXiv:2005.00763)

Decays

The direct decay ωπ 0+π ++π \omega \to \pi^0 + \pi^+ + \pi^-:

  • S. Rudaz, Anomalies, vector mesons and the ω3π\omega \to 3 \pi contact term, Phys. Lett. B 145 (1984) 281-284 (spire:208193, doi:10.1016/0370-2693(84)90355-1)

  • E. A. Kuraev, Z. K. Silagadze, Once more about the ω3π\omega \to 3 \pi contact term, Phys. Atom. Nucl. 58:1589-1596, 1995 (arXiv:hep-ph/9502406)

  • M. Albaladejo, I. Danilkin, S. Gonzalez-Solis, D. Winney, C. Fernandez-Ramirez, A. N. Hiller Blin, V. Mathieu, M. Mikhasenko, A. Pilloni, A. Szczepaniak, ω3π\omega \to 3\pi and ωπ 0\omega \pi^0 transition form factor revisited (arXiv:2006.01058)

The ωπρ\omega \pi \rho-coupling

  • D. Garcia Gudino, G. Toledo Sanchez, The ωρπ\omega \rho \pi coupling in the VMD model revisited, Int. J. Mod. Phys. A 27, 1250101 (2012) (arXiv:1106.1467)

On Dalitz decays of omega-mesons:

  • Mirko Wachs, Die Selbstenergie des Omega-Mesons, 2000 (epda:000050)

  • Henning Berghäuser, Investigation of the Dalitz decays and the electromagnetic form factors of the η\eta and π 0\pi^0-meson, 2010 (spire:1358057)

Skyrme hadrodynamics with vector mesons (π\pi-ω\omega-ρ\rho-model)

Inclusion of vector mesons (omega-meson and rho-meson/A1-meson) into the Skyrmion model of quantum hadrodynamics, in addition to the pion:

First, on the equivalence between hidden local symmetry- and massive Yang-Mills theory-description of Skyrmion quantum hadrodynamics:

  • Atsushi Hosaka, H. Toki, Wolfram Weise, Skyrme Solitons With Vector Mesons: Equivalence of the Massive Yang-Mills and Hidden Local Symmetry Scheme, 1988, Z. Phys. A332 (1989) 97-102 (spire:24079)

See also

  • Marcelo Ipinza, Patricio Salgado-Rebolledo, Meron-like topological solitons in massive Yang-Mills theory and the Skyrme model (arXiv:2005.04920)

Inclusion of the ω\omega-meson

Original proposal for inclusion of the ω-meson in the Skyrme model:

Relating to nucleon-scattering:

  • J. M. Eisenberg, A. Erell, R. R. Silbar, Nucleon-nucleon force in a skyrmion model stabilized by omega exchange, Phys. Rev. C 33, 1531 (1986) (doi:10.1103/PhysRevC.33.1531)

Combination of the omega-meson-stabilized Skyrme model with the bag model for nucleons:

Discussion of nucleon phenomenology for the ω\omega-stabilized Skyrme model:

Inclusion of the ρ\rho-meson

Original proposal for inclusion of the ρ-meson:

Discussion for phenomenology of light atomic nuclei:

Inclusion of the ω\omega- and ρ\rho-meson

The resulting π\pi-ρ\rho-ω\omega model:

See also

  • Ki-Hoon Hong, Ulugbek Yakhshiev, Hyun-Chul Kim, Modification of hyperon masses in nuclear matter, Phys. Rev. C 99, 035212 (2019) (arXiv:1806.06504)

Review:

Combination of the omega-rho-Skyrme model with the bag model of quark confinement:

  • H. Takashita, S. Yoro, H. Toki, Chiral bag plus skyrmion hybrid model with vector mesons for nucleon, Nuclear Physics A Volume 485, Issues 3–4, August 1988, Pages 589-605 (doi:10.1016/0375-9474(88)90555-6)

Inclusion of the σ\sigma-meson

Inclusion of the sigma-meson:

  • Thomas D. Cohen, Explicit σ\sigma meson, topology, and the large-NN limit of the Skyrmion, Phys. Rev. D 37 (1988) (doi:10.1103/PhysRevD.37.3344)

For analysis of neutron star equation of state:

  • David Alvarez-Castillo, Alexander Ayriyan, Gergely Gábor Barnaföldi, Hovik Grigorian, Péter Pósfay, Studying the parameters of the extended σ\sigma-ω\omega model for neutron star matter (arXiv:2006.03676)

Couplings

On omega-meson interactions and decay modes:

  • Stanley M. Flatté, Darrell O. Huwe, Joseph J. Murray, Janice Button-Shafer, Frank T. Solmitz, M. Lynn Stevenson, and Charles Wohl, Decay Properties of the ω\omega Meson, Phys. Rev. 145, 1050 – Published 27 May 1966 (doi:10.1103/PhysRev.145.1050)

  • M. Feldman, W. Frati, R. Gleeson, J. Halpern, M. Nussbaum, S. Richert, Neutral Decay of the ω\omega Meson, Phys. Rev. 159, 1219 (1967) (doi10.1103/PhysRev.159.1219, spire:52556)

  • W. Deinet A. Menzione H.Müller, H. M.Staudenmaier, S.Buniatov, D.Schmitt, Neutral decay modes of the ω 0\omega^0-meson, Physics Letters B Volume 30, Issue 6, 10 November 1969, Pages 426-429 (doi:10.1016/0370-2693(69)90479-1)

  • F. M. Renard, The reaction e +e π 0+ω(π +π π 0)e^+ e^- \to \pi^0 + \omega(\pi^+ \pi^- \pi^0) and the ω\omega-ρ\rho-π\pi coupling, Nuovo Cimento A (1965-1970) 64, 979–984 (1969) (doi:10.1007/BF02758844)

  • M. K. Volkov, D. Ebert, M. Nagy, Excited pions, ρ\rho- and ω\omega-mesons and their decays in a chiral SU(2)×SU(2)SU(2) \times SU(2) Lagrangian, Int. J. Mod. Phys. A13 (1998) 5443-5458 (arXiv:hep-ph/9705334)

  • S. I. Dolinsky, et al., Radiative Decays of ρ\rho and ω\omega Mesons, Z. Phys. C42 (1989) 511 (spire:264694, doi:10.1007/BF01557655)

  • J. T. Dakin, M. G. Hauser, M. N. Kreisler, R. E. Mischke, Measurement of the Branching Ratios for ω Neutral Decays, Phys. Rev. D 6, 2321 (1972) (doi:10.1103/PhysRevD.6.2321)

  • Dafne Guetta, Paul Singer, ω\omega-ρ\rho Mixing and the ωππγ\omega \to \pi \pi \gamma Decay, Phys. Rev. D63 (2001) 017502 (arXiv:hep-ph/0005059)

  • Roland Kaiser, equation (12) of: Anomalies and WZW-term of two-flavour QCD, Phys. Rev. D63:076010, 2001 (arXiv:hep-ph/0011377)

  • A. Gokalp, A. Kucukarslan, S. Solmaz, O. Yilmaz, σ\sigma-Meson and ω\omega-ρ\rho mixing effects in ωπ +π γ\omega \to \pi^+ \pi^- \gamma decay, Acta Phys.Polon. B34 (2003) 4095-4104 (arXiv:hep-ph/0306044)

  • Jeffrey Harvey, Christopher T. Hill, Richard J. Hill, Section II.B of: Standard Model Gauging of the WZW Term: Anomalies, Global Currents and pseudo-Chern-Simons Interactions, Phys. Rev. D77:085017, 2008 (arXiv:0712.1230)

  • S. Leupold, M. F. M. Lutz, Hadronic three-body decays of light vector mesons, Eur. Phys. J. A39:205-212, 2009 (arXiv:0807.4686)

  • Florian Jonas, Measurement of ω\omega and η\eta mesons via their three pion decay with ALICE in pp collisions at s=tTeV\sqrt{s} = t TeV, 2018 (cds:2653176)

In holographic QCD

The omega-meson in holographic QCD (Witten-Sakai-Sugimoto model):

Mediating baryon interaction

On sigma-mesons and omega-mesons mediating baryon interaction, discussed in holographic QCD via D3-D7 brane intersections:

Last revised on June 2, 2020 at 14:20:50. See the history of this page for a list of all contributions to it.