fields and particles in particle physics
and in the standard model of particle physics:
matter field fermions (spinors, Dirac fields)
flavors of fundamental fermions in the standard model of particle physics: | |||
---|---|---|---|
generation of fermions | 1st generation | 2nd generation | 3d generation |
quarks () | |||
up-type | up quark () | charm quark () | top quark () |
down-type | down quark () | strange quark () | bottom quark () |
leptons | |||
charged | electron | muon | tauon |
neutral | electron neutrino | muon neutrino | tau neutrino |
bound states: | |||
mesons | light mesons: pion () ρ-meson () ω-meson () f1-meson a1-meson | strange-mesons: ϕ-meson (), kaon, K*-meson (, ) eta-meson () charmed heavy mesons: D-meson (, , ) J/ψ-meson () | bottom heavy mesons: B-meson () ϒ-meson () |
baryons | nucleons: proton neutron |
(also: antiparticles)
hadrons (bound states of the above quarks)
minimally extended supersymmetric standard model
bosinos:
dark matter candidates
Exotica
In string theory by a giant graviton one refers to a D-brane- or M-brane-configuration which wraps a contractible cycle stabilized not by topology (as for usual wrapped branes) or by flux (as for polarized branes), but by angular momentum, usually along the equator of the n-sphere-factor in a Freund-Rubin compactification.
The supersymmetric classical solutions of the BMN matrix model are configurations of fuzzy 2-spheres, corresponding to M2-brane-giant gravitons (BMN 02 (5.4), DSJVR 02).
The concept was introduced in
for branes in anti de Sitter spacetime times an n-sphere and generalized to other near horizon geometries in
S. R. Das, S. P.. Trivedi, S. Vaidya, Magnetic Moments of Branes and Giant Gravitons, JHEP 0010 (2000) 037 (arXiv:hep-th/0008203)
Andrei Mikhailov, Giant Gravitons from Holomorphic Surfaces, JHEP 0011 (2000) 027 (arXiv:hep-th/0010206)
J. M. Camino, A.V. Ramallo, Giant Gravitons with NSNS B field, JHEP 0109:012,2001 (arXiv:hep-th/0107142)
Review:
Further discussion:
Akikazu Hashimoto, Shinji Hirano, N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 0008:051, 2000 (arXiv:hep-th/0008016)
Sumit R. Das, Antal Jevicki, Samir D. Mathur, Vibration modes of giant gravitons, Phys.Rev. D63 (2001) 024013 (arXiv:hep-th/0009019)
Sumit R. Das, Antal Jevicki, Samir Mathur, Giant Gravitons, BPS bounds and Noncommutativity, Phys.Rev. D63 (2001) 044001 (arXiv:hep-th/0008088)
Julian Lee, Tunneling between the giant gravitons in , Phys.Rev. D64 (2001) 046012 (arXiv:hep-th/0010191)
Jin Young Kim, Y.S. Myung, Vibration modes of giant gravitons in the background of dilatonic D-branes, Phys.Lett. B509 (2001) 157-162 (arXiv:hep-th/0103001)
Vijay Balasubramanian, Micha Berkooz, Asad Naqvi, Matthew Strassler, Giant Gravitons in Conformal Field Theory, JHEP 0204 (2002) 034 (arXiv:hep-th/0107119)
Yolanda Lozano, Jeff Murugan, Andrea Prinsloo, A giant graviton genealogy, JHEP 08 (2013) 109 (arXiv:1305.6932)
Specifically M2-M5 brane bound state giant gravitons are discussed in:
J. M. Camino, A. V. Ramallo, M-Theory Giant Gravitons with C field, Phys. Lett. B525:337-346, 2002 (arXiv:hep-th/0110096)
Shinji Hirano, Yuki Sato, Giant graviton interactions and M2-branes ending on multiple M5-branes, JHEP 05 (2018) 065 (arXiv:1803.04172)
On the relation of polarized branes to giant gravitons:
Discussion of SYM-duals of giant gravitons and indexing of BPS states by Young diagrams:
Steve Corley, Antal Jevicki, Sanjaye Ramgoolam, Exact Correlators of Giant Gravitons from dual SYM, Adv. Theor. Math. Phys. 5 (2002) 809-839 (arXiv:hep-th/0111222)
Garreth Kemp, Sanjaye Ramgoolam, BPS states, conserved charges and centres of symmetric group algebras, JHEP 01 (2020) 146 (arXiv:1911.11649)
Last revised on May 24, 2021 at 13:33:26. See the history of this page for a list of all contributions to it.