topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
continuous metric space valued function on compact metric space is uniformly continuous
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
group cohomology, nonabelian group cohomology, Lie group cohomology
cohomology with constant coefficients / with a local system of coefficients
differential cohomology
The singular cohomology (also Betti cohomology) of a topological space is the cohomology in ∞Grpd of its fundamental ∞-groupoid :
for the Eilenberg-MacLane object with the group in degree , the degree -singular cohomology of is
With presented by the category sSet of simplicial sets, the fundamental -groupoid is modeled by the Kan complex
the singular simplicial complex of .
The object is usefully modeled by the simplicial set
which is
the underlying simplicial set under the forgetful functor
from abelian simplicial groups to simplicial sets;
of the abelian simplicial group which is the image under the Dold-Kan correspondence
of the chain complex
concentrated in degree .
So in this model we have
A cocycle in this cohomology theory is a cochain on a simplicial set, on the singular complex .
Using the adjunction this is isomorphic to
where
is the free abelian simplicial group on the simplicial set : this is the simplicial abelian group of singular chains of . Its elements are formal sums of continuous maps . In this form
Using next the Dold-Kan adjunction this is
where
is the Moore complex of normalized chains of : this is the complex of singular chains, formal sums over of simplices in .
This way singular cohomology is the abelian dual of singular homology.
…
If the topological space is semi-locally contractible (meaning: any open subset has an open cover by open subsets that are contractible in ), then the sheaf cohomology of is isomorphic to the singular cohomology of for any abelian group of coefficients.
This was proved in (Sella 16).
A previous version of this entry led to the following discussion, which later led to extensive discussion by email. Partly as a result of this and similar discussions, there is now more information on how Kan complexes are -groupoids at
The original references on chain homology/cochain cohomology and ordinary cohomology in the form of cellular cohomology:
A footnote on the first page reads as follows, giving attribution to Alexander 35a, 35b:
Die Resultate dieser Arbeit wurden für den Fall gewöhnlicher Komplexe vom Verfasser im Frühling und im Sommer 1934 erhalten und teilweise an der Internationalen Konferenz für Tensoranalysis (Moskau) im Mai 1934 vorgetragen. Die hier dargestellte allgemeinere Theorie bildete den Gegenstand eines Vortrages, den der Verfasser an der Internationalen Topologischen Konferenz (Moskau, September 1935) hielt; bei letzterer Gelegenheit erfuhr er, dass ein grosser Teil dieser Resultate im Falle von Komplexen indessen von Herrn Alexander erhalten worden ist. Vgl. die inzwischen erschienenen Noten von Herrn Alexander in den «Proceedings of the National Academy of Sciences U.S.A.», 21, (1935), 509—512. Herr Alexander trug über seine Resultate ebenfalls an der Moskauer Topologischen Konferenz vor. Verallgemeinerungen für abgeschlossene Mengen und die Konstruktion eines Homologieringes für Komplexe und abgeschlossene Mengen, über welche der Verfasser ebenso an der Tensorkonferenz 1934 vorgetragen hat, werden in einer weiteren Publikation dargestellt. Diese weitere Begriffsbildungen sind übrigens ebenfalls von Herrn Alexander gefunden und teilweise in den erwähnten Noten publiziert.
Andrei Kolmogoroff, Homologiering des Komplexes und des lokal-bicompakten Raumes, Recueil Mathématique 1(43) (1936), 701–705. mathnet.
J. W. Alexander, On the chains of a complex and their duals, Proc. Nat. Acad. Sei. USA, 21(1935), 509–511 (doi:10.1073/pnas.21.8.50)
J. W. Alexander, On the ring of a compact metric space, Proc. Nat. Acad. Sci. USA, 21 (1935), 511–512 (doi:10.1073/pnas.21.8.511)
J. W. Alexander, On the connectivity ring of an abstract space, Ann. of Math., 37 (1936), 698–708 (doi:10.2307/1968484, pdf)
The term “cohomology” was introduced by Hassler Whitney in
See also
The notion of singular cohomology is due to
The notion of monadic cohomology via canonical resolutions:
Michael Barr, Jon Beck, Homology and Standard Constructions, in: Seminar on Triples and Categorical Homology Theory, Lecture Notes in Maths. 80, Springer (1969), Reprints in Theory and Applications of Categories 18 (2008) 186-248 [tac:18, pdf]
Michael Barr, Cartan-Eilenberg cohomology and triples, J. Pure Applied Algebra 112 3 (1996) 219–238 [doi:10.1016/0022-4049(95)00138-7, pdf, pdf]
Michael Barr, Algebraic cohomology: the early days, in Galois Theory, Hopf Algebras, and Semiabelian Categories, Fields Institute Communications 43 (2004) 1–26 [doi:10.1090/fic/043, pdf, pdf]
The general abstract perspective on cohomology (subsuming sheaf cohomology, hypercohomology, non-abelian cohomology and indications of Whitehead-generalized cohomology) was essentially established in:
Relation to sheaf cohomology:
A simplified proof using hypercovers can be found in
Last revised on February 21, 2021 at 07:27:25. See the history of this page for a list of all contributions to it.