nLab The Blind Spot

Redirected from "partial maps".

Context

Foundations

foundations

The basis of it all

 Set theory

set theory

Foundational axioms

foundational axioms

Removing axioms

(0,1)(0,1)-Category theory

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

This page collects links related to

on formal logic and its categorical semantics with an emphasis on linear logic and in fact on some kind of quantum logic (section 17), but emphatically not in the original sense of Birkhoff & von Neumann (1936).

A kind of survey is in:

Foreword

from p. xii:

Among the magisterial mistakes of logic, one will first mention quantum logic, whose ridiculousness can only be ascribed to a feeling of superiority of the language – and ideas, even bad, as soon as they take a written form – over the physical world. Quantum logic is indeed a sort of punishment inflicted on nature, guilty of not yielding to the prejudices of logicians… just like Xerxes had the Hellespont – which had destroyed a boat bridge – whipped.

from p. xiii:

The blind spot is what one does not see and what one is not even conscious of not seeing. The most trivial blind spot is the cheap modal logic justified by an even cheaper Kripke semantics and vice versa; but one finds similar blindings in the most elaborated interpretations. The good news of these lectures is that the procedural standpoint seems to be capable of dislodging the unsaid, the unseen. Simply, while the absence of Hauptsatz is enough to show that logic S5 is nonsense, one has to work much more to imagine what could be wrong in the principles justifying – say – the function 2 n2^n.

Part I The basics

Part II Around Curry-Howard

Part III Linear logic

Part IV Polarised interpretations

Part V Iconoclasm

Part VI Geometry of Interaction

Envoi. The phantom of transparency

category: reference

Last revised on April 8, 2023 at 14:29:58. See the history of this page for a list of all contributions to it.