nLab complex manifold

Redirected from "complex manifolds".
Contents

Context

Complex geometry

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Manifolds and cobordisms

Contents

Idea

A complex manifold is a manifold holomorphically modeled on polydiscs DD in n\mathbb{C}^n (complexified nn-dimensional cartesian space):

Properties

Covers

Proposition

Every complex manifold admits a good open cover in Disk cmplDisk_{cmpl}.

For instance (Maddock, lemma 3.2.8).

Examples

Complex 1-dimensional: Riemann surfaces

A complex manifold of complex dimension 1 is called a Riemann surface.

Calabi-Yau manifolds

A complex manifold whose canonical bundle is trivializable is a Calabi-Yau manifold. In complex dimension 2 this is a K3 surface.

Other examples

References

Textbook accounts:

See also:

With an eye towards application in mathematical physics:

Lectures notes:

  • Stefan Vandoren, Lectures on Riemannian Geometry, Part II: Complex Manifolds (pdf)

  • Zachary Maddock, Dobeault cohomology (pdf)

Last revised on July 19, 2021 at 09:12:15. See the history of this page for a list of all contributions to it.