synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
Models
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
Formalism
Definition
Spacetime configurations
Properties
Spacetimes
black hole spacetimes | vanishing angular momentum | positive angular momentum |
---|---|---|
vanishing charge | Schwarzschild spacetime | Kerr spacetime |
positive charge | Reissner-Nordstrom spacetime | Kerr-Newman spacetime |
Quantum theory
A differential operator whose principal symbol is hyperbolic (…)
Over a Lorentzian manifold a normally hyperbolic differential operator is a hyperbolic differential operator whose principal symbol coincides with the given pseudo-Riemannian metric.
A Green hyperbolic differential operator is a hyperbolic differential operator that behaves like a normally hyperbolic differential operator on a globally hyperbolic Lorentzian manifold in that it has unique advanced and retarded Green functions.
Last revised on August 30, 2018 at 06:07:56. See the history of this page for a list of all contributions to it.