correlator as differential form on configuration space of points



Algebraic Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)



field theory:

Lagrangian field theory


quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization



States and observables

Operator algebra

Local QFT

Perturbative QFT

Differential geometry

synthetic differential geometry


from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry



smooth space


The magic algebraic facts




tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }


Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)



In Euclidean field theory an alternative to regarding propagators/correlators as distributions of several variables with singularities on the fat diagonal, one may pull-back these distributions to smooth functions/differential forms on (Fulton-MacPherson compactifications of) configuration spaces of points and regard them in this incarnation, in particular discuss their renormalization from this perspective. Vaguely analogous to the perspective of wavefront sets, this perspective amounts to recording around each potentially singular point an (d-1)-sphere worth of extra directional information carried by the correlator/Feynman amplitude in the vicinity of the point.

A general and systematic discussion of perturbative quantum field theory and its renormalization from this perspective is offered in Berghoff 14a, Berghoff 14b (albeit presently only for Euclidean quantum field theory, not for relativistic quantum field theory).


Higher Chern-Simons theory

This approach to pQFT was originally considered specifically for the Chern-Simons propagator in quantization of 3d Chern-Simons theory in Axelrod-Singer 93, see also Bott-Cattaneo 97, Remark 3.6 and Cattaneo-Mnev 10, Remark 11. The analysis applies verbatim to higher Chern-Simons theory such as notably the AKSZ sigma-models, too, since the Feynman propagator depends only on the free field theory-equations of motion, which is dA=0d A = 0 in all these cases.

Here the Chern-Simons propagator regarded as a non-singular differential form on the compactification of the configuration space of points serves to exhibit its Feynman amplitudes as providing graph complex-models for the de Rham cohomology of these compactified configuration spaces of points, a point originally due to Kontsevich 94 and re-amplified for instance Campos-Idrissi-Lambrechts-Willwacher 18, p. 66.


The approach was originally considered specifically for Chern-Simons theory in

which was re-amplified in

and highlighted as a means to obtain graph complex-models for the de Rham cohomology of configuration spaces of points in

A systematic development of Euclidean perturbative quantum field theory with n-point functions considered as smooth functions on Fulton-MacPherson compactifications/wonderful compactifications of configuration spaces of points and more generally of subspace arrangements is due to

Last revised on November 9, 2018 at 10:26:06. See the history of this page for a list of all contributions to it.