nLab
nucleosynthesis

Contents

Context

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

Generally, nucleosynthesis refers to the formation of bound states of nucleons (protons and neutrons) to atomic nuclei. Specifically, primordial nucleosynthesis (often meant by default) is this process taking place in the early observable universe some comoving time after the big bang (see also at QCD cosmology). Other natural processes of nucleosynthesis happened and happen in stars? and in supernovae.

References

General

See also

Primordial nucleosynthesis

  • Dominik J. Schwarz, The first second of the Universe, Annalen Phys.12:220-270, 2003 (arXiv:astro-ph/0303574)

Last revised on January 22, 2020 at 08:39:27. See the history of this page for a list of all contributions to it.