# nLab orthosymplectic super Lie algebra

Contents

supersymmetry

## Applications

#### Lie theory

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

$\infty$-Lie groupoids

$\infty$-Lie groups

$\infty$-Lie algebroids

$\infty$-Lie algebras

# Contents

## Idea

The orthosymplectic supergroup $OSp(N|2p)$ is the sub-supergroup of the general linear supergroup $GL(N|2p)$ on those elements which preserve the canonical graded-symmetric bilinear form on $\mathbb{R}^{N|2p}$, i.e. the form which is the canonical symmetric bilinear form on the even elements $\mathbb{R}^{N}$, is the canonical symplectic form on the odd elements in $\mathbb{R}^{0|2p}$ and is zero on mixed pairs of elements.

The corresponding super Lie algebras are called the orthosymplectic Lie algebras $\mathfrak{osp}(N|2p)$. Over a field of characteristic zero these constitute the infinite $B$- and $D$-series in the classification of simple super Lie algebras. They are closely related to superconformal symmetry (e.g. D’Auria-Ferrara-Lledo-Varadarajan 00), see at supersymmetry – Classification – Superconformal symmetry.

## Examples

$\phantom{A}$$d$$\phantom{A}$$\phantom{A}$super anti de Sitter spacetime$\phantom{A}$
$\phantom{A}$4$\phantom{A}$$\;\;\;\;\frac{OSp(8\vert4)}{Spin(3,1) \times SO(7)}\;\;\;\;$
$\phantom{A}$5$\phantom{A}$$\;\;\;\;\frac{SU(2,2 \vert 5)}{Spin(4,1)\times SO(5)}\;\;\;\;$
$\phantom{A}$7$\phantom{A}$$\;\;\;\;\frac{OSp(6,2 \vert 4)}{Spin(6,1) \times SO(4)}\;\;\;\;$

### General

Appearance of $\mathfrak{osp}(1|2) \times$sl(2)-modular functor is found in the seemingly plain sl(2)-WZW model for fractional level (see there) in:

• Boris Feigin, Feodor Malikov, Modular functor and representation theory of $\widehat{\mathfrak{sl}_2}$ at a rational level, p. 357-405 in: Loday, Stasheff, Voronov (eds.) Operads: Proceedings of Renaissance Conferences, Contemporary Mathematics 202, AMS (1997) [arXiv:q-alg/9511011, ams:conm-202]

### In superstring theory

• Igor Bandos, Jerzy Lukierski, Christian Preitschopf, Dmitri Sorokin, OSp supergroup manifolds, superparticles and supertwistors, Phys.Rev.D61:065009, 2000 (arXiv:hep-th/9907113)

• Eric Bergshoeff, Antoine Van Proeyen, The many faces of $OSp(1|32)$, Class. Quantum Grav. 17 (2000) 3277–3303 (arXiv:hep-th/0003261)

• Horatiu Nastase, Towards a Chern-Simons M theory of $OSp(1\vert 32) \times OSp(1\vert 32)$ (arXiv:hep-th/0306269)

• J.J. Fernandez, J.M. Izquierdo, M.A. del Olmo, Contractions from $osp(1|32) \oplus osp(1|32)$ to the M-theory superalgebra extended by additional fermionic generators, Nuclear Physics B Volume 897, August 2015, Pages 87–97 (arXiv:1504.05946)

• Jan-Willem van Holten, Antoine Van Proeyen, $N=1$ Supersymmetry Algebras in $D=2$, $D=3$, $D=4$ $MOD-8$, J.Phys. A15 (1982) 3763 (spire:177060)

• Itzhak Bars, C. Deliduman, D. Minic, Lifting M-theory to Two-Time Physics, Phys.Lett. B457 (1999) 275-284 (arXiv:hep-th/9904063)

• Itzhak Bars, 2T Physics Formulation of Superconformal Dynamics Relating to Twistors and Supertwistors, Phys.Lett. B483 (2000) 248-256 (arXiv:hep-th/0004090)

• Peter West, Hidden Superconformal Symmetry in M Theory, JHEP 0008:007, 2000 (arXiv:hep-th/0005270)

### Representation theory

The representation theory (singleton representations) of the orthosymplectic group is discussed in

• Hermann Nicolai, Ergin Sezgin, Singleton representations of $Osp(N,4)$, Physics Letters B, Volume 143, Issues 4–6, 16 August 1984, Pages 389-395