quantum algorithms:
A topological state of matter governed by a kind of -gauge theory and thought to exhibit topological order.
The state was originally conceived under the name resonating valence bond states in:
8 2 (1973) 153-160 [doi:10.1016/0025-5408(73)90167-0]
Further early discussion:
Review:
Lucile Savary, Leon Balents, Quantum Spin Liquids, Rep. Prog. Phys. 80 016502 (2017) [arXiv:1601.03742, doi:10.1088/0034-4885/80/1/016502]
C. Broholm et al.: Quantum spin liquids, Science 367 6475 (2020) [doi:10.1126/science.aay0668]
Steven A. Kivelson, Shivaji Sondhi, 50 years of quantum spin liquids, Nature Reviews Physics, May 26, 2023 [arXiv:2305.18103, doi:10.1038/s42254-023-00596-x]
Wikipedia, Quantum spin liquid
As examples of Kitaev materials:
Simon Trebst, Kitaev Materials, [arXiv:1701.07056]
David Mandrus, New Kitaev Materials (Oct 2019) [pdf]
Simon Trebst, Ciarán Hickey: Kitaev Materials, Physics Reports 950 (2022) 1-37 [doi:10.1016/j.physrep.2021.11.003]
Kitaev Materials, npj Quantum Materials collection (2024)
Understanding as topological order with anyon-excitations:
V. Kalmeyer, Robert B. Laughlin, Equivalence of the resonating-valence-bond and fractional quantum Hall states, Phys. Rev. Lett. 59 (1987) 2095 [doi:10.1103/PhysRevLett.59.2095]
Xiao-Gang Wen, Frank Wilczek, Anthony Zee, Chiral spin states and superconductivity, Phys. Rev. B 39 (1989) 11413 [doi:10.1103/PhysRevB.39.11413]
Andrew M. Essin, Michael Hermele, Classifying fractionalization: symmetry classification of gapped spin liquids in two dimensions, Phys. Rev. B 87 104406 (2013) [arXiv:1212.0593, doi:10.1103/PhysRevB.87.104406]
Kyusung Hwang, Anyon condensation and confinement transition in a Kitaev spin liquid bilayer, Phys. Rev. B 109 134412 (2024) [arXiv:2301.05721, doi:10.1103/PhysRevB.109.134412]
Last revised on June 9, 2024 at 20:53:04. See the history of this page for a list of all contributions to it.