nLab parameterized quantum system

Redirected from "parameterized quantum systems".
Contents

Context

Quantum systems

quantum logic


quantum physics


quantum probability theoryobservables and states


quantum information


quantum technology


quantum computing

Contents

1. Idea

A parameterized quantum system is a quantum system depending on “external” or “classical” parameters.

In typical examples arising in quantum mechanics, this simply means that the Hamiltonian HH is not just one fixed linear operator on a given Hilbert space of quantum states \mathcal{H}, but a continuous (or suitably smooth) map

H():PEnd() H(-) \;\colon\; P \longrightarrow End(\mathcal{H})

of such, from some topological “parameter space” PP.

More abstractly, where a single quantum system is described by linear type theory (see also at quantum logic), a parameterized quantum system is described by dependent linear type theory.

2. Properties

Adiabatic Berry phases and adiabatic quantum computation

The quantum adiabatic theorem says that/how the evolution of a parameterized quantum system under sufficiently slow movement of the external parameters remains in an eigenstate for a given system of commuting quantum observables. The remaining transformations on these eigenspaces are known as (non-abelian) Berry phases. These are used as quantum gates in adiabatic quantum computation.

3. Examples

Time-dependent quantum mechanics

For example, time-dependent Hamiltonians/quantum systems are described this way for PP \subset \mathbb{R} interpreted as the space of time-parameters.

See also at Dyson formula.

Defect anyon braiding

In some models of braid group statistics (see there for more) the anyons are defects/solitons whose positions serve as external parameters of the system, so that the (non-abelian) Berry phases under their adibatic moverment constitutes a braid group representation on the quantum system‘s ground states.

5. References

Discussion of classically-parameterized quantum circuits:

(…)

Discussion of quantumly-parameterized quantum circuits:

  • Evan Peters, Prasanth Shyamsundar, Qarameterized circuits: Quantum parameters for QML (2021) [web]

following

  • Guillaume Verdon, Jason Pye, Michael Broughton, A Universal Training Algorithm for Quantum Deep Learning [arXiv:1806.09729]

  • Prasanth Shyamsundar, Non-Boolean Quantum Amplitude Amplification and Quantum Mean Estimation [arXiv:2102.04975]

Last revised on March 29, 2023 at 16:52:40. See the history of this page for a list of all contributions to it.