nLab topological membrane

Contents

Contents

Idea

A membrane sigma-model topological quantum field theory that is roughly related to topological M-theory as the M2-brane is related to M-theory and to the topological string (A-model/B-model) as the M2-brane is related to the string and to the topological M5-brane as the M2-brane is related to the M5-brane.

The target space of the topological membrane is a G₂-manifold, the action functional is governed by the higher holonomy of the compatible supergravity C-field over the membrane worldvolume.

Definition

According to (Bao-Bengtsson-Cederwall-Nillson 05, equation (2.14)) the topological (p=2)(p=2)-brane is the super 2-brane which exists in D=7D = 7 according to the brane scan, which says that the super Poincare Lie algebra in D=7D = 7 carries an exceptional Lie algebra cocycle of degree (2+2)(2+2), hence admits the Green-Schwarz action functional for a super 2-brane.

The brane scan.

The Green-Schwarz type super pp-brane sigma-models (see at table of branes for further links and see at The brane bouquet for the full classification):

=d\stackrel{d}{=}p=p =123456789
11M2M5
10D0F1, D1D2D3D4NS5, D5D6D7D8D9
9*
8*
7M2 top{}_{top}
6F1 little{}_{little}, S1 sd{}_{sd}S3
5*
4**
3*

(The first columns follow the exceptional spinors table.)

The corresponding exceptional super L-∞ algebra cocycles (schematically, without prefactors):

=d\stackrel{d}{=}p=p =123456789
11Ψ 2E 2\Psi^2 E^2 on sIso(10,1)Ψ 2E 5+Ψ 2E 2C 3\Psi^2 E^5 + \Psi^2 E^2 C_3 on m2brane
10Ψ 2E 1\Psi^2 E^1 on sIso(9,1)B 2 2+B 2Ψ 2+Ψ 2E 2B_2^2 + B_2 \Psi^2 + \Psi^2 E^2 on StringIIA\cdots on StringIIBB 2 3+B 2 2Ψ 2+B 2Ψ 2E 2+Ψ 2E 4B_2^3 + B_2^2 \Psi^2 + B_2 \Psi^2 E^2 + \Psi^2 E^4 on StringIIAΨ 2E 5\Psi^2 E^5 on sIso(9,1)B 2 4++Ψ 2E 6B_2^4 + \cdots + \Psi^2 E^6 on StringIIA\cdots on StringIIBB 2 5++Ψ 2E 8B_2^5 + \cdots + \Psi^2 E^8 in StringIIA\cdots on StringIIB
9Ψ 2E 4\Psi^2 E^4 on sIso(8,1)
8Ψ 2E 3\Psi^2 E^3 on sIso(7,1)
7Ψ 2E 2\Psi^2 E^2 on sIso(6,1)
6Ψ 2E 1\Psi^2 E^1 on sIso(5,1)Ψ 2E 3\Psi^2 E^3 on sIso(5,1)
5Ψ 2E 2\Psi^2 E^2 on sIso(4,1)
4Ψ 2E 1\Psi^2 E^1 on sIso(3,1)Ψ 2E 2\Psi^2 E^2 on sIso(3,1)
3Ψ 2E 1\Psi^2 E^1 on sIso(2,1)

The Brane molecule

Furthermore, there exists a more general classification of possible supermembranes in spacetime with SS spatial dimensions and TT time dimensions, appearing in (Blencowe-Duff 88). In this sense, the brane scan is but the T=1T=1 branch of the brane molecule. The objects appearing here are expected to be related to other generalizations of string theory. See D=12 supergravity and bosonic M-theory.

The brane molecule without assuming super Poincare invariance.

Compare:

Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D(-2)-brane\,\,
D0-brane\,\,BFSS matrix model
D2-brane\,\,\,
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,D=7 super Yang-Mills theory
D8-brane\,\,
(D=2n+1)(D = 2n+1)type IIB\,\,
D(-1)-brane\,\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
D5-brane\,\,\,
D7-brane\,\,\,
D9-brane\,\,\,
(p,q)-string\,\,\,
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
D-brane for topological string\,
A-brane\,
B-brane\,
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
M-wave
topological M2-branetopological M-theoryC3-field on G₂-manifold
topological M5-brane\,C6-field on G₂-manifold
S-brane
SM2-brane,
membrane instanton
M5-brane instanton
D3-brane instanton
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d

References

In the context of exceptional generalized geometry:

Last revised on July 18, 2024 at 13:06:17. See the history of this page for a list of all contributions to it.