nLab
vector representation
Contents
Context
Representation theory
representation theory
geometric representation theory
Ingredients
Definitions
representation, 2representation, ∞representation

group, ∞group

group algebra, algebraic group, Lie algebra

vector space, nvector space

affine space, symplectic vector space

action, ∞action

module, equivariant object

bimodule, Morita equivalence

induced representation, Frobenius reciprocity

Hilbert space, Banach space, Fourier transform, functional analysis

orbit, coadjoint orbit, Killing form

unitary representation

geometric quantization, coherent state

socle, quiver

module algebra, comodule algebra, Hopf action, measuring
Geometric representation theory

Dmodule, perverse sheaf,

Grothendieck group, lambdaring, symmetric function, formal group

principal bundle, torsor, vector bundle, Atiyah Lie algebroid

geometric function theory, groupoidification

EilenbergMoore category, algebra over an operad, actegory, crossed module

reconstruction theorems
Theorems
Representation theory
representation theory
geometric representation theory
Ingredients
Definitions
representation, 2representation, ∞representation

group, ∞group

group algebra, algebraic group, Lie algebra

vector space, nvector space

affine space, symplectic vector space

action, ∞action

module, equivariant object

bimodule, Morita equivalence

induced representation, Frobenius reciprocity

Hilbert space, Banach space, Fourier transform, functional analysis

orbit, coadjoint orbit, Killing form

unitary representation

geometric quantization, coherent state

socle, quiver

module algebra, comodule algebra, Hopf action, measuring
Geometric representation theory

Dmodule, perverse sheaf,

Grothendieck group, lambdaring, symmetric function, formal group

principal bundle, torsor, vector bundle, Atiyah Lie algebroid

geometric function theory, groupoidification

EilenbergMoore category, algebra over an operad, actegory, crossed module

reconstruction theorems
Theorems
Spin geometry
Contents
Definition
Let $Spin(V) \overset{\pi}{\to} SO(V)$ be a spin group extension of a special orthogonal group. Then a spin representation of $Spin(V)$ is called the vector representation if it comes via $\pi$ from the defining linear representation of $SO(V)$ on the vector space underlying the given inner product space $V$.
Created on February 22, 2018 at 05:02:08.
See the history of this page for a list of all contributions to it.