exceptional structures, exceptional isomorphisms
exceptional finite rotation groups:
and Kac-Moody groups:
exceptional Jordan superalgebra,
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
-Lie groupoids
-Lie groups
-Lie algebroids
-Lie algebras
One of the exceptional Lie groups.
(Jordan algebra automorphism group of octonionic Albert algebra is F4)
The group of automorphism with respect to the Jordan algebra structure on the octonionic Albert algebra is the exceptional Lie group :
(e.g. Yokota 09, section 2.2)
G2, F4,
José Figueroa-O'Farrill, A geometric construction of the exceptional Lie algebras F4 and E8 (arXiv:0706.2829)
Ichiro Yokota, Exceptional Lie groups (arXiv:0902.0431)
Cohomological properties:
That the group controls the massless degrees of freedom of 11-dimensional supergravity was observed and explored in
T. Pengpan, Pierre Ramond, M(ysterious) Patterns in SO(9), Phys. Rept. 315:137-152,1999 (arXiv:hep-th/9808190)
Pierre Ramond, Boson-Fermion Confusion: The String Path To Supersymmetry, Nucl.Phys.Proc.Suppl. 101 (2001) 45-53 (arXiv:hep-th/0102012)
Pierre Ramond, Algebraic Dreams (arXiv:hep-th/0112261)
Hisham Sati, -bundles in M-theory, Commun. Num. Theor. Phys 3:495-530, 2009 (arXiv:0807.4899)
Last revised on May 14, 2019 at 04:51:19. See the history of this page for a list of all contributions to it.