nLab Spin(9,1)

Contents

Context

Group Theory

Spin geometry

Contents

Idea

Spin(9,1)Spin(9,1) denotes the spin group-cover of the Lorentz groups in Minkowski signature (9,1)(9,1).

Properties

Relation to the octonions

exceptional spinors and real normed division algebras

Lorentzian
spacetime
dimension
AA\phantom{AA}spin groupnormed division algebra\,\, brane scan entry
3=2+13 = 2+1Spin(2,1)SL(2,)Spin(2,1) \simeq SL(2,\mathbb{R})A\phantom{A} \mathbb{R} the real numberssuper 1-brane in 3d
4=3+14 = 3+1Spin(3,1)SL(2,)Spin(3,1) \simeq SL(2, \mathbb{C})A\phantom{A} \mathbb{C} the complex numberssuper 2-brane in 4d
6=5+16 = 5+1Spin(5,1)Spin(5,1) \simeq SL(2,H)A\phantom{A} \mathbb{H} the quaternionslittle string
10=9+110 = 9+1Spin(9,1) {\simeq}SL(2,O)A\phantom{A} 𝕆\mathbb{O} the octonionsheterotic/type II string

rotation groups in low dimensions:

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
\vdots\vdots
D8SO(16)Spin(16)SemiSpin(16)
\vdots\vdots
D16SO(32)Spin(32)SemiSpin(32)

see also

Created on April 6, 2021 at 07:25:38. See the history of this page for a list of all contributions to it.