nLab para-quaternionic structure

Contents

Context

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Manifolds and cobordisms

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Idea

The analogue of quaternionic structure for para-quaternions?.

Definition

Para-quaternionic structure on vector spaces

Definition

A para-quaternionic structure on a vector space VV is a Lie subalgebra QEnd(V)Q\subset \text{End}(V) of the endomorphism Lie algebra which admits a linear basis (J 1,J 2,J 3)(J_1, J_2, J_3) such that J 3=J 1J 2J_3 = J_1 J_2 and J α 2=ϵ αIdJ^2_{\alpha}= \epsilon_{\alpha} Id, where (ϵ 1,ϵ 2,ϵ 3)=(1,1,1)(\epsilon_1,\epsilon_2,\epsilon_3)=(-1,1,1).

Para-quaternionic Kähler manifold

Definition

A pseudo-Riemannian manifold (M,g)(M, g) of dimension 5\geq 5 endowed with a parallel distribution Q pEnd(T pM)Q_p\subset \text{End}(T_p M) of gg-skew-symmetric para-quaternionic structures is called a para-quaternionic Kähler manifold.

The metric gg of a para-quaternionic Kähler manifold has signature (2n,2n)(2n, 2n) and is Einstein.

References

General:

  • Dmitry Vladimirovich Alekseevsky, and Vicente Cortés. The twistor spaces of a para-quaternionic Kähler manifold. Osaka J. Math. 45(1): 215-251 (March 2008).

  • David E. Blair, J. Davidov and O. Muskarov: Hyperbolic twistor spaces, Rocky Mountain J. Math. 35 (2005), 1437–1465.

  • David E. Blair. A product twistor space, Serdica Math. J. 28 (2002), 163–174.

On para-quaternionic contact structures:

  • Marina Tchomakova, Stefan Ivanov, Simeon Zamkovoy. Geometry of paraquaternionic contact structures (2024). (arXiv:2404.16713).

Last revised on April 26, 2024 at 08:57:50. See the history of this page for a list of all contributions to it.