quantum algorithms:
By “quantum simulation” one broadly means the simulation of quantum systems. The term is used in two rather different ways:
Without further qualification, “quantum simulation” typically refers to the simulation of (complicated) quantum systems appearing in nature, such as (large) molecules, by other (more controllable) quantum systems, notably by quantum computers (cf. quantum chemistry).
Classical quantum simulation refers to the simulation of quantum computers themselves by classical computers, such as for testing (verifying) quantum circuit-designs and more generally for testing quantum programs and quantum computing-architectures.
General discussion:
Tomi H Johnson, Stephen R Clark, Dieter Jaksch, What is a quantum simulator?, EPJ Quantum Technol. 1 10 (2014) [doi:10.1140/epjqt10]
I. M. Georgescu, S. Ashhab, Franco Nori, Quantum Simulation, Rev. Mod. Phys. 86 154 (2014) [arXiv:1308.6253, doi:10.1103/RevModPhys.86.153]
See also:
Quantum simulation on trapped-ion quantum hardware:
On quantum simulation of the Dirac equation:
L. Lamata, J. León, T. Schätz, Enrique Solano: Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion, Phys. Rev. Lett. 98 253005 (2007) [doi:10.1103/PhysRevLett.98.253005]
R. Gerritsma, G. Kirchmair, F. Zähringer, Enrique Solano, R. Blatt & C. F. Roos: Quantum simulation of the Dirac equation, Nature 463 68–71 (2010) [doi:10.1038/nature08688]
On quantum simulation of (lattice) quantum field theory:
John Preskill, Simulating quantum field theory with a quantum computer, 36th Annual International Symposium on Lattice Field Theory, PoS 334 (2019) [doi:10.22323/1.334.0024,
arXiv:1811.10085]
Jad C. Halimeh, Masanori Hanada, Shunji Matsuura, Franco Nori, Enrico Rinaldi, Andreas Schäfer: A universal framework for the quantum simulation of Yang-Mills theory [arXiv:2411.13161]
specifically of scattering amplitudes of bound states:
On quantum simulation of anyons:
T. Andersen et al.: Non-Abelian braiding of graph vertices in a superconducting processor, Nature 618 (2023) 264–269 [arXiv:2210.10255, doi:10.1038/s41586-023-05954-4]
Daniel Nigg, Markus Mueller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel A. Martin-Delgado, Rainer Blatt: Experimental Quantum Computations on a Topologically Encoded Qubit, Science 345 6194 (2014) 302-305 [arXiv:1403.5426, doi:10.1126/science.1253742]
Mohsin Iqbal, Nathanan Tantivasadakarn: Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer, Nature Communications Physics 7 (2024) 205 [doi:10.1038/s42005-024-01698-3, arXiv:2302.01917]
Mohsin Iqbal, Nathanan Tantivasadakarn, R. Verresen et al., Figure 5 in : Non-Abelian topological order and anyons on a trapped-ion processor, Nature 626 (2024) 505–511 [doi:10.1038/s41586-023-06934-4]
Nature research briefing: Topological matter created on a quantum chip produces quasiparticles with computing power [doi:10.1038/d41586-023-04126-8]
Yongshan Ding, Frederic T. Chong, Classical Simulation of Quantum Computation, in: Quantum Computer Systems, Synthesis Lectures on Computer Architecture. Springer (2020) [doi:10.1007/978-3-031-01765-0_9]
Ya-Qian Zhao, Ren-Gang Li, Jin-Zhe Jiang, Chen Li, Hong-Zhen Li, En-Dong Wang, Wei-Feng Gong, Xin Zhang, Zhi-Qiang Wei, Simulation of Quantum Computing on Classical Supercomputers, Phys. Rev. A 104 032603 (2021) [arXiv:2010.14962, doi:10.1103/PhysRevA.104.032603]
Robert Willie, Classical simulation of quantum circuits (2022) [pdf]
Xiaosi Xu, Simon Benjamin, Jinzhao Sun, Xiao Yuan, Pan Zhang, A Herculean task: Classical simulation of quantum computers [arXiv:2302.08880]
Kieran Young, Marcus Scese, Ali Ebnenasir, Simulating Quantum Computations on Classical Machines: A Survey [arXiv:2311.16505]
See also:
Last revised on December 17, 2024 at 07:30:46. See the history of this page for a list of all contributions to it.