nLab D-topological infinity-groupoid



Cohesive \infty-Toposes


topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory


Basic concepts

Universal constructions

Extra stuff, structure, properties


Basic statements


Analysis Theorems

topological homotopy theory



A D-topological \infty-groupoid is an ∞-groupoid equipped with cohesion in the form D-topology, as in D-topological spaces/Delta-generated topological spaces. The latter are among the concrete 0-truncated? D-topological \infty-groupoids, containing, in particular, the topological manifolds.

Examples of 1-truncated objects in D-topological \infty-groupoids are topological groupoids/topological stacks which are presented by internal groupoids in D-topological spaces (hence degree-wise concrete).

More generally, every simplicial topological space whose topology is degreewise D-topological canonically presents a D-topological \infty-groupoid. Various constructions with simplicial toppological spaces find their natural home in this (∞,1)-topos. For instance:



Let CartSp top{}_{top} be the site whose underlying category has as objects the Cartesian spaces n\mathbb{R}^n, nn \in \mathbb{N} equipped with the Euclidean topology and as morphisms the continuous maps between them; and whose coverage is given by good open covers.



ETopGrpd:=(,1)Sh(CartSp top) ETop \infty Grpd := (\infty,1)Sh(CartSp_{top})

to be the (∞,1)-category of (∞,1)-sheaves on CartSp topCartSp_{top}.




The (∞,1)-topos ETopGrpdETop \infty Grpd is a cohesive (∞,1)-topos.


The site CartSp top{}_{top} an ∞-cohesive site. See there for details.

For completeness we record general properties of cohesive (∞,1)-toposes implied by this.


ETopGrpdETop\infty Grpd is


We say that ETopGrpdETop \infty Grpd defines Euclidean-topological cohesion. An object in ETopGrpdETop \infty Grpd we call a Euclidean-topological \infty-groupoid.


Write TopMfd for the category of topological manifolds. This becomes a large site with the open cover coverage. We have an equivalence of (∞,1)-categories

ETopGrpdSh^ (,1)(TopMfd) ETop\infty Grpd \simeq \hat Sh_{(\infty,1)}(TopMfd)

with the hypercompletion of the (∞,1)-category of (∞,1)-sheaves on TopMfd.


Since every topological manifold admits an open cover by open balls homeomorphic to a Cartesian space it follows that CartSp top{}_{top} is a dense sub-site of TopMfdTopMfd. Accordingly the categories of sheaves are equivalent

Sh(CartSp top)Sh(TopMfd). Sh(CartSp_{top}) \simeq Sh(TopMfd) \,.

By the discussion at model structure on simplicial sheaves it follows that the hypercomplete (∞,1)-toposes over these sites are equivalent

Sh^ (,1)(CartSp top)Sh^ (,1)(TopMfd). \hat Sh_{(\infty,1)}(CartSp_{top}) \simeq \hat Sh_{(\infty,1)}(TopMfd) \,.

But by the above proposition we have that before hypercompletion Sh (,1)(CartSp top)Sh_{(\infty,1)}(CartSp_{top}) is cohesive. This means that it is in particular a local (∞,1)-topos. By the discussion there, this means that it already coincides with its hypercompletion, Sh (,1)(CartSp top)Sh^ (,1)(CartSp top)Sh_{(\infty,1)}(CartSp_{top}) \simeq \hat Sh_{(\infty,1)}(CartSp_{top}).


Write Top 1Top_1 for the 1-category of Hausdorff topological spaces and continuous maps. There is a canonical functor

j:Top 1τ 0ETopGrpdETopGrpd j : Top_1 \to \tau_{\leq 0}ETop\infty Grpd \hookrightarrow ETop\infty Grpd

given by sending a topological space XX to the 0-truncated (∞,1)-sheaf (= sheaf) on CartSp top{}_{top} externally represented by XX under the embedding CartSp topTopCartSp_{top} \hookrightarrow Top:

j(X):(UCartSp top)Hom Top(U,X)SetGrpd. j(X) : (U \in CartSp_{top}) \mapsto Hom_{Top}(U,X) \in Set \hookrightarrow \infty Grpd \,.

The functor jj exhibits TopMfd as a full sub-(∞,1)-category of ETopGrpdETop\infty Grpd

TopMfdETopGrpd. TopMfd \hookrightarrow ETop\infty Grpd \,.

With the above proposition this follows directly by the (∞,1)-Yoneda lemma.

Model category presentation

We dicuss some aspects of the presentation of ETopGrpdETop \infty Grpd by model category structures.


Let [CartSp top op,sSet] proj,loc[CartSp_{top}^{op}, sSet]_{proj,loc} be the Cech-local projective model structure on simplicial presheaves. This is a presentation of ETopGrpdETop \infty Grpd

([CartSp top op,sSet] proj,loc) ETopGrpd. ([CartSp_{top}^{op}, sSet]_{proj,loc})^\circ \simeq ETop \infty Grpd \,.

Also the model structure on simplicial sheaves sSh(CartSp top) locsSh(CartSp_{top})_{loc} is a presentation

(sSh(CartSp top) loc) ETopGrpd. (sSh(CartSp_{top})_{loc})^\circ \simeq ETop \infty Grpd \,.

The first statement is a special case of the general discussion at model structure on simplicial presheaves. Similarly, by the general discussion at model structure on simplicial sheaves we have that this presents the hypercompletion of the (∞,1)-category of (∞,1)-sheaves. But by the above ETopGrpdETop\infty Grpd already is hypercomplete.



ETopGrpdETop\infty Grpd is also the hypercompletion of the (∞,1)-topos presented by the local model structure on simplicial presheaves over all of Mfd (or over any small dense sub-site such as for instance the full sub-category of manifolds bounded in size by some regular cardinal).

^([Mfd op,sSet] proj,loc) ETopGrpd. \hat{}([Mfd^{op}, sSet]_{proj,loc})^\circ \simeq ETop \infty Grpd \,.

By the above proposition.

While the model structures on simplicial presheaves over both sites present the same (∞,1)-category, they lend themselves to different computations:

the model structure over CartSp topCartSp_{top} has more fibrant objects and hence fewer cofibrant objects, while the model structure over MfdMfd has more cofibrant objects and fewer fibrant objects. More specifically:


Let X[Mfd op,sSet]X \in [Mfd^{op}, sSet] be an object that is globally fibrant , separated and locally trivial, meaning that

  1. X(U)X(U) is an inhabited Kan complex for all UMfdU \in Mfd;

  2. for every covering {U iU}\{U_i \to U\} in Mfd the descent comparison morphism X(U)[Mfd op,sSet](C({U i}),X)X(U) \to [Mfd^{op}, sSet](C(\{U_i\}), X) is a full and faithful (∞,1)-functor;

  3. for contractible UU we have π 0[Mfd op,sSet](C({U i}),X)*\pi_0[Mfd^{op}, sSet](C(\{U_i\}), X) \simeq *.

Then the restriction of XX along CartSp topMfdCartSp_{top} \hookrightarrow Mfd is a fibrant object in the local model structure [CartSp top op,sSet] proj,loc[CartSp_{top}^{op}, sSet]_{proj,loc}.


The fibrant objects in the local model structure are precisely those that are Kan complexes over every object and for which the descent morphism is an equivalence for all covers.

The first condition is given by the first assumption. The second and third assumptions imply the second condition over contractible manifolds, such as the Cartesian spaces.


Let GG be a topological group, regarded as the presheaf over Mfd that it represents. Write W¯G\bar W G (see the notation at simplicial group) for the simplicial presheaf on MfdMfd given by the nerve of the topological groupoid (G*)(G \stackrel{\to}{\to} *). (This is a presentation of the delooping of the 0-truncated ∞-group GETopGrpdG \in ETop\infty Grpd, see the discussion below. )

The fibrant resolution of W¯G\bar W G in [Mfd op,sSet] proj,loc[Mfd^{op}, sSet]_{proj,loc} is (the rectification of) its stackification: the stack GBundG Bund of topological GG-principal bundles. But the canonical morphism

W¯GGBund \bar W G \to G Bund

is a full and faithful functor (over each object UMfdU \in Mfd): it includes the single object of W¯G\bar W G as the trivial GG-principal bundle. The automorphism of the single object in W¯G\bar W G over UU are GG-valued continuous functions on UU, which are precisely the automorphisms of the trivial GG-bundle. Therefore this inclusion is full and faithful, the presheaf W¯G\bar W G is a separated prestack.

Moreover, it is locally trivial: every Cech cocycle for a GG-bundle over a Cartesian space is equivalent to the trivial one. Equivalently, also π 0GBund( n)*\pi_0 G Bund(\mathbb{R}^n) \simeq *.

Therefore W¯G\bar W G, when restricted CartSp topCartSp_{top}, does become a fibrant object in [CartSp top op,sSet] proj,loc[CartSp_{top}^{op}, sSet]_{proj,loc}.

On the other hand, let XMfdX \in Mfd be any non-contractible manifold. Since in the projective model structure on simplicial presheaves every representable is cofibrant, this is a cofibrant object in [Mfd op,sSet] proj,loc[Mfd^{op}, sSet]_{proj,loc}. However, it fails to be cofibrant in [CartSp top op,sSet] proj,loc[CartSp_{top}^{op}, sSet]_{proj,loc}. Instead, there a cofibrant replacement is given by the Cech nerve C({U i})C(\{U_i\}) of any good open cover {U iX}\{U_i \to X\}.

This yields two different ways to compute the first nonabelian cohomology

H ETop 1(X,G):=π 0ETopGrpd(X,BG) H^1_{ETop}(X,G) := \pi_0 ETop\infty Grpd (X, \mathbf{B}G)

in ETopGrpdETop\infty Grpd on XX with coefficients in GG, as

  1. π 0[Mfd op,sSet](X,GBund)π 0GBund(X)\cdots \simeq \pi_0 [Mfd^{op}, sSet](X, G Bund) \simeq \pi_0 G Bund(X);

  2. π 0[CartSp top op,sSet](C({U i}),W¯G)H Ch 1(X,G)\cdots \simeq \pi_0 [CartSp_{top}^{op}, sSet](C(\{U_i\}), \bar W G) \simeq H^1_{Ch}(X,G).

In the first case we need to construct the fibrant replacement GBundG Bund. This amounts to computing GG-cocycles = GG-bundles over all manifolds and then evaluate on the given one, XX, by the 2-Yoneda lemma.

In the second case however we cofibrantly replace XX by a good open cover, and then find the Cech cocycles with coefficients in GG on that.

For ordinary GG-bundles the difference between the two computations may be irrelevant in practice, because ordinary GG-bundles are very well understood. However for more general coefficient objects, for instance general topological simplicial groups GG, the first approach requires to find the full ∞-stackification to the ∞-stack of all principal ∞-bundles, while the second approach requires only to compute specific coycles over one specific base object. In practice the latter is often all that one needs.

Structures in the cohesive (,1)(\infty,1)-topos ETopGrpdETop \infty Grpd

We discuss what some of the general abstract Structures in a cohesive (∞,1)-topos look like in the model ETopGrpdETop \infty Grpd.

As usual, write

(ΠDiscΓcoDisc):ETopGrpdcoDiscΓDiscΠGrpd (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : ETop \infty Grpd \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\leftarrow}}}} \infty Grpd

for the defining quadruple of adjoint (∞,1)-functors that refine the global section (∞,1)-geometric morphism to ∞Grpd.

Cohesive \infty-groups

By the general properties of cohesive (∞,1)-toposes with an ∞-cohesive site of definition, every ∞-group object is presented by a presheaf of simplicial groups. For ETopGrpdETop\infty Grpd among these are the simplicial topological groups. See there for more details.

Geometric homotopy and Galois theory

We discuss the realization of the fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos in ETopinftGrpdETop \inft Grpd.


Let XX be a paracompact topological space such that that XX admits a good open cover by open balls (for instance a paracompact manifold).

Then Π(X):=Π(i(X))Grpd\Pi(X) := \Pi(i(X)) \in \infty Grpd is equivalent to the standard fundamental ∞-groupoid of a topological space that is presented by the singular simplicial complex SingXSing X

Π(X)SingX. \Pi(X) \simeq Sing X \,.

Equivalently, under geometric realization 𝕃||:GrpdTop\mathbb{L}|-| : \infty Grpd \to Top we have that there is a weak homotopy equivalence

X|Π(X)|. X \simeq |\Pi(X)| \,.

By the discussion at ∞-cohesive site we have an equivalence Π()𝕃lim \Pi(-) \simeq \mathbb{L} \lim_\to to the derived functor of the sSet-colimit functor lim :[CartSp op,sSet] proj,locsSet Quillen\lim_\to : [CartSp^{op}, sSet]_{proj,loc} \to sSet_{Quillen}.

To compute this derived functor, let {U iX}\{U_i \to X\} be a good open cover by open balls, hence homeomorphically by Cartesian space. By goodness of the cover the Cech nerve C( iU iX)[CartSp op,sSet]C(\coprod_i U_i \to X) \in [CartSp^{op}, sSet] is degreewise a coproduct of representables, hence a split hypercover. By the discussion at model structure on simplicial presheaves we have that in this case the canonical morphism

C( iU iX)X C(\coprod_i U_i \to X) \to X

is a cofibrant resolution of XX in [CartSp op,sSet] proj,loc[CartSp^{op}, sSet]_{proj,loc}. Accordingly we have

Π(X)(𝕃lim )(X)lim C( iU iX). \Pi(X) \simeq (\mathbb{L} \lim_\to) (X) \simeq \lim_\to C(\coprod_i U_i \to X) \,.

Using the equivalence of categories [CartSp op,sSet][Δ op,[CartSp op,Set]][CartSp^{op}, sSet] \simeq [\Delta^{op}, [CartSp^{op}, Set]] and that colimits in presheaf categories are computed objectwise and finally using that the colimit of a representable functor is the point (an incarnation of the Yoneda lemma) we have that Π(X)\Pi(X) is presented by the Kan complex that is obtained by contracting in the Cech nerve C( iU i)C(\coprod_i U_i) each open subset to a point.

The classical nerve theorem asserts that this implies the claim.


We may regard Top itself as a cohesive (∞,1)-topos. (Π TopDisc TopΓ TopcoDisc Top)TopGrpd(\Pi_{Top}\dashv Disc_{Top} \dashv \Gamma_{Top} \dashv coDisc_{Top}) Top \stackrel{\simeq}{\to} \infty Grpd. This is discussed at discrete ∞-groupoid.

Using this the above proposition may be stated as saying that for XX a paracompact topological space that admits a good open cover we have

Π ETopGrpd(X)Π Top(X). \Pi_{ETop\infty Grpd}(X) \simeq \Pi_{Top}(X) \,.

Let X X_\bullet be a good simplicial topological space that is degreewise paracompact and degreewise admits a good open cover, regarded naturally as an object X Top Δ opETopGrpdX_\bullet \in Top^{\Delta^{op}} \to ETop \infty Grpd.

We have that the intrinsic Π(X )Grpd\Pi(X_\bullet) \in \infty Grpd coincides under geometric realization 𝕃||:GrpdTop\mathbb{L}|-| : \infty Grpd \stackrel{\simeq}{\to} Top with the ordinary geometric realization of simplicial topological spaces |X | Top Δ op|X_\bullet|_{Top^{\Delta^{op}}}

|Π(X )||X | Top Δ op. |\Pi(X_\bullet)| \simeq |X_\bullet|_{Top^{\Delta^{op}}} \,.

Write QQ for Dugger’s cofibrant replacement functor on [CartSp op,sSet] proj,loc[CartSp^{op}, sSet]_{proj,loc} (discussed at model structure on simplicial presheaves). On a simplicially constant simplicial presheaf XX it is given by

QX:= [n]ΔΔ[n]( U 0U nXU 0), Q X := \int^{[n] \in \Delta} \Delta[n] \cdot \left( \coprod_{U_0 \to \cdots \to U_n \to X} U_0 \right) \,,

where the coproduct in the integrand of the coend is over all sequences of morphisms from representables U iU_i to XX as indicated. On a general simplicial presheaf X X_\bullet it is given by

QX := [k]ΔΔ[k]QX k, Q X_\bullet := \int^{[k] \in \Delta} \Delta[k] \cdot Q X_k \,,

which is the simplicial presheaf that over any nCartSp\mathbb{R}^n \in CartSp takes as value the diagonal of the bisimplicial set whose (n,r)(n,r)-entry is U 0U nX kCartSp top( n,U 0)\coprod_{U_0 \to \cdots \to U_n \to X_k} CartSp_{top}(\mathbb{R}^n,U_0).

Since coends are special colimits, the colimit functor itself commutes with them and we find

Π(X ) (𝕃lim )X lim QX [n]ΔΔ[k]lim (QX k). \begin{aligned} \Pi(X_\bullet) & \simeq (\mathbb{L} \lim_\to) X_\bullet \\ & \simeq \lim_\to Q X_\bullet \\ & \simeq \int^{[n] \in \Delta} \Delta[k] \cdot \lim_\to (Q X_k) \,. \end{aligned}

By the discussion at Reedy model structure this coend is a homotopy colimit over the simplicial diagram lim QX :ΔsSet Quillen\lim_\to Q X_\bullet : \Delta \to sSet_{Quillen}

hocolim Δlim QX . \cdots \simeq hocolim_\Delta \lim_\to Q X_\bullet \,.

By the above proposition we have for each kk \in \mathbb{N} weak equivalences lim QX k(𝕃lim )X kSingX k\lim_\to Q X_k \simeq (\mathbb{L} \lim_\to) X_k \simeq Sing X_k, so that

hocolim ΔSingX k [k]ΔΔ[k]SingX k diagSing(X ) . \begin{aligned} \cdots &\simeq hocolim_\Delta Sing X_k \\ & \simeq \int^{[k] \in \Delta} \Delta[k] \cdot Sing X_k \\ & \simeq diag Sing(X_\bullet)_\bullet \end{aligned} \,.

By the discussion at geometric realization of simplicial topological spaces, this maps to the homotopy colimit of the simplicial topological space X X_\bullet, which is just its geometric realizaiton if it is proper.

Paths and geometric Postnikov towers

We discuss the notion of geometric path ∞-groupoids realized in ETopGrpdETop\infty Grpd.

In the above constructions of Π(X)\Pi(X) the actual paths are not explicit. We discuss here presentations of Π(X)\mathbf{\Pi}(X) in terms of actual paths.

By prop. we have


Let XX be a a paracompact topological space, regarded as an object of ETopGrpdETop\infty Grpd. Then Π(X)\mathbf{\Pi}(X) is presented by the constant simplicial presheaf

DiscSing(X):(U,[k])Hom Top(Δ k,X). Disc Sing(X) \,:\, (U,[k]) \mapsto Hom_{Top}(\Delta^k, X) \,.

Possibly more natural would seem to look at the topological Kan complex that remembers the topology on the spaces of paths:


For XX a paracompact topological space, define the simplicial presheaf

SingX:(U,[k])Hom Top(U×Δ k,X). \mathbf{Sing} X : (U,[k]) \mapsto Hom_{Top}(U \times \Delta^k, X) \,.

Also SingX\mathbf{Sing} X is a presentation of Π(X)\mathbf{\Pi}(X)


For each fixed UCartSpU \in CartSp the inclusion of simplicial sets

SingXSing(X)(U) Sing X \to \mathbf{Sing}(X)(U)

is a weak homotopy equivalence, since UCartSpU \in CartSp is contractible.

Therefore the inclusion of simplicial presheaves

DiscSingXSingX Disc Sing X \to \mathbf{Sing} X

is a weak equivalence in [CartSp op,sSet] proj[CartSp^{op}, sSet]_{proj}. This implies the claim with prop. .


Typically one is interested in mapping out of Π(X)\mathbf{\Pi}(X). While it is clear that DiscSingXDisc Sing X is cofibrant in [CartSp op,sSet] proj,loc[CartSp^{op}, sSet]_{proj,loc}, it is harder to determine the necessary resolutions of SingX\mathbf{Sing}X.

Cohomology and principal \infty-bundles

We dicuss aspects of the intrinsic cohomology of ETopGrpdE Top \infty Grpd and of the principal ∞-bundles that it classifies.


Let AA \in ∞Grpd be any discrete ∞-groupoid. Write |A||A| \in Top for its geometric realization. For XX any topological space, the nonabelian cohomology of XX with coefficients in AA is the set of homotopy classes of maps X|A|X \to |A|

H Top(X,A):=π 0Top(X,|A|). H_{Top}(X,A) := \pi_0 Top(X,|A|) \,.

We say Top(X,|A|)Top(X,|A|) itself is the cocycle ∞-groupoid for AA-valued nonabelian cohomology on XX.

Similarly, for X,AETopGrpdX, \mathbf{A} \in ETop \infty Grpd two e-topological \infty-groupoids, write

H ETop(X,A):=π 0ETopGrpd(X,A) H_{ETop}(X,\mathbf{A}) := \pi_0 ETop\infty Grpd(X,\mathbf{A})

for the intrinsic cohomology of ETopGrpdETop \infty Grpd on XX with coefficients in A\mathbf{A}.


Let AA \in ∞Grpd, write DiscAETopGrpdDisc A \in ETop \infty Grpd for the corresponding discrete topological ∞-groupoid. Let XTop 1iETopGrpdX \in Top_1 \stackrel{i}{\hookrightarrow} ETop \infty Grpd be a paracompact topological space regarded as a 0-truncated Euclidean-topological \infty-groupoid.

We have an isomorphism of cohomology sets

H Top(X,A)H ETop(X,DiscA) H_{Top}(X,A) \simeq H_{ETop}(X,Disc A)

and in fact an equivalence of cocycle ∞-groupoids

Top(X,|A|)ETopGrpd(X,DiscA). Top(X,|A|) \simeq ETop\infty Grpd(X, Disc A) \,.

By the (ΠDisc)(\Pi \dashv Disc)-adjunction of the locally ∞-connected (∞,1)-topos ETopGrpdETop \infty Grpd we have

ETopGrpd(X,DiscA)Grpd(Π(X),A)||Top(|ΠX|,|A|). ETop\infty Grpd(X, Disc A) \simeq \infty Grpd(\Pi(X), A) \underoverset{\simeq}{|-|}{\to} Top(|\Pi X|, |A|) \,.

From this the claim follows by the above proposition.


Let GG be a well-pointed simplicial topological group degreewise in TopMfd. Then the (,1)(\infty,1)-functor Π:ETopGrpdGrpd\Pi : \mathrm{ETop}\infty\mathrm{Grpd} \to \infty \mathrm{Grpd} preserves homotopy fibers of all morphisms of the form XBGX \to \mathbf{B}G that are presented in [CartSp top op,sSet] proj[\mathrm{CartSp}_{\mathrm{top}}^{\mathrm{op}}, \mathrm{sSet}]_{proj} by morphism of the form XW¯GX \to \bar W G with XX fibrant.


Notice that since (∞,1)-sheafification preserves finite (∞,1)-limits we may indeed discuss the homotopy fiber in the global model structure on simplicial presheaves.

Write QXXQ X \stackrel{\simeq}{\to} X for the global cofibrant resolution given by QX:[n] {U i 0U i nX n}U i 0Q X : [n] \mapsto \coprod_{\{U_{i_0} \to \cdots \to U_{i_n} \to X_n\}} U_{i_0}, where the U i kU_{i_k} range over CartSp top\mathrm{CartSp}_{\mathrm{top}} . (Discussed at model structure on simplicial presheaves – cofibrant replacement. ) This has degeneracies splitting off as direct summands, and hence is a good simplicial topological space that is degreewise in TopMfd. Consider then the pasting of two pullback diagrams of simplicial presheaves

P P WG QX X W¯G. \array{ P' &\stackrel{\simeq}{\to}& P &\to& W G \\ \downarrow && \downarrow && \downarrow \\ Q X &\stackrel{\simeq}{\to}& X &\to & \bar W G } \,.

By the discussion at geometric realization of simplicial topological spaces we have that the rightmost vertical morphism is a fibration in [CartSp top op,sSet] proj[CartSp_{top}^{op}, sSet]_{proj}. Since fibrations are stable under pullback, the middle vertical morphism is also a fibration (as is the leftmost one). Since the global model structure is a right proper model category it follows then that also the top left horizontal morphism is a weak

Since the square on the right is a pullback of fibrant objects with one morphism being a fibration, PP is a presentation of the homotopy fiber of XW¯GX \to \bar W G. Hence so is PP', which is moreover the pullback of a diagram of good simplicial spaces.

By prop. we have that on the outer diagram Π\Pi is presented by geometric realization of simplicial topological spaces |||-|. By the discussion of realization of simplicial principal bundles there, we have a pullback in Top Quillen\mathrm{Top}_{\mathrm{Quillen}}

|P| |WG| |QX| |W¯G| \array{ {|P|} &\to& {|W G|} \\ \downarrow && \downarrow \\ {|Q X|} & \to & {|\bar W G|} }

which exhibits |P||P| as the homotopy fiber of |QX||W¯G||Q X| \to |\bar W G|. But this is a model for |Π(XW¯G)||\Pi(X \to \bar W G)|.

Twisted cohomology

See twisted bundle .

Universal coverings and geometric Whitehead towers

We discuss geometric Whitehead towers in ETopGrpdETop\infty Grpd.


Let XX be a pointed] [[paracompact topological space that admits a good open cover. Then its ordinary Whitehead tower *X (2)X (1)X (0)=X* \to \cdots X^{(2)} \to X^{(1)} \to X^{(0)} = X in Top coincides with the image under the intrinsic fundamental ∞-groupoid functor |Π()||\Pi(-)| of its geometric Whitehead tower X ()X (2)X (1)X (0)=XX^{\mathbf{(\infty)}} \to \cdots X^{\mathbf{(2)}} \to X^{\mathbf{(1)}} \to X^{\mathbf{(0)}} = X in ETopGrpdETop \infty Grpd:

|Π()| :(X ()X (2)X (1)X (0)=X)ETopGrpd (*X (2)X (1)X (0)=X)Top. \begin{aligned} |\Pi(-)| & : (X^{\mathbf{(\infty)}} \to \cdots X^{\mathbf{(2)}} \to X^{\mathbf{(1)}} \to X^{\mathbf{(0)}} = X) \in ETop\infty Grpd \\ & \mapsto (* \to \cdots X^{(2)} \to X^{(1)} \to X^{(0)} = X) \in Top \end{aligned} \,.

By the general discussion at Whitehead tower in an (∞,1)-topos the geometric Whitehead tower is characterized for each nn by the fiber sequence

X (n)X (n1)B nπ n(X)Π n(X)Π (n1)(X). X^{\mathbf{(n)}} \to X^{\mathbf{(n-1)}} \to \mathbf{B}^n \mathbf{\pi}_n(X) \to \mathbf{\Pi}_n(X) \to \mathbf{\Pi}_{(n-1)}(X) \,.

By the above proposition on the fundamental ∞-groupoid we have that Π n(X)DiscSingX\mathbf{\Pi}_n(X) \simeq Disc Sing X. Since DiscDisc is right adjoint and hence preserves homotopy fibers this implies that Bπ n(X)B nDiscπ n(X)\mathbf{B} \mathbf{\pi}_n(X) \simeq \mathbf{B}^n Disc \pi_n(X), where π n(X)\pi_n(X) is the ordinary nnth homotopy group of the pointed topological space XX.

Then by the above proposition on geometric realization of homotopy fibers we have that under |Π()||\Pi(-)| the space X (n)X^{\mathbf{(n)}} maps to the homotopy fiber of |Π(X (n1))|B n|Discπ n(X)|=B nπ n(X)|\Pi(X^{\mathbf{(n-1)}})| \to B^n |Disc \pi_n(X)| = B^n \pi_n(X).

By induction over nn this implies the claim.

Path \infty-groupoid and geometric Postnikov towers

Let CC be an ∞-connected site. We give an explicit presentation of the constant path inclusion XΠ(X)X \to \mathbf{\Pi}(X) in the locally ∞-connected (∞,1)-topos over CC such that the component maps are cofibrations.


The projective model structure on simplicial presheaves [C op,sSet] proj[C^{op}, sSet]_{proj} has a set of generating cofibrations

I={UΔ[n]UΔ[n]|UC,n)}. I = \{ U \cdot \partial \Delta[n] \hookrightarrow U \cdot \Delta[n] | U \in C, n \in \mathbb{N}) \} \,.

See model structure on functors for details.



Sing:C[C op,sSet] \mathbf{Sing} : C \to [C^{op}, sSet]

for the functor given by applying the small object argument to this set II to obtain a functorial factorization of the terminal morphisms U*U \to * into a cofibration followed by an acyclic fibration

USingU*. U \hookrightarrow \mathbf{Sing} U \stackrel{\simeq}{\to} * \,.


Sing:[C op,sSet][C op,sSet] \mathbf{Sing} : [C^{op}, sSet] \to [C^{op}, sSet]

be the Yoneda extension (left Kan extension through the Yoneda embedding) of this functor to all of [C op,sSet][C^{op}, sSet].


For UCU \in C the simplicial presheaf SingU\mathbf{Sing}U is a resolution of the (nerve of the) fundamental groupoid Π 1(U)\Pi_1(U):

the non-degenerate components of SingU\mathbf{Sing}U at the first stage of the small object argument are such that a map out of them into a simplicial presheaf AA are given by commuting diagrams

U 0U 0 (s,t) U U 0×Δ[1] A. \array{ U_0 \coprod U_0 &\stackrel{(s,t)}{\to}& U \\ \downarrow && \downarrow \\ U_0 \times \Delta[1] &\to& A } \,.

This is a UU-parameterized family of objects of AA together with a U 0U_0-parameterized family of morphisms of AA associated to the pairs of points (s,t)U(s,t) \in U, hence to the “straight paths” from ss to tt. At the next stage for every triangle of such straight path a 2-morphism is thrown in, and so on. So SingU\mathbf{Sing}U indeed is an \infty-groupoid of paths in UU.


The functor Sing\mathbf{Sing} is the left adjoint of a Quillen adjunction

(SingR):[C op,sSet] proj,loc[C op,sSet] proj,loc. (\mathbf{Sing} \dashv R) : [C^{op}, sSet]_{proj, loc} \to [C^{op}, sSet]_{proj, loc} \,.

Its left derived functor is equivalent to the intrinsic fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos

𝕃Sing()Π() \mathbb{L}\mathbf{Sing}(-) \simeq \Pi(-)

and the constant path inclusion IdΠId \to \Pi is presented by the canonical natural transformation IdSingId \to \mathbf{Sing}.


On an arbitrary simplicial presheaf XX the functor Sing\mathbf{Sing} is given by the coend

Sing:X UCX(U)SingU. \mathbf{Sing} : X \mapsto \int^{U \in C} X(U) \cdot \mathbf{Sing}U \,.

By construction this preserves all colimits. Hence by the adjoint functor theorem (using that domain and codomain are presheaf categories) we have that Sing\mathbf{Sing} is a left adjoint. Explicitly, the right adjoint is given by

RX:U[C op,sSet](SingU,X). R X : U \mapsto [C^{op}, sSet](\mathbf{Sing}U, X) \,.

We check that Sing\mathbf{Sing} is also a left Quillen functor first for the global projective model structure. For that, notice that the above expression is the evaluation of the left Quillen bifunctor (see the examples-section there for details)

C()():[C op,sSet] proj×[C,[C op,sSet] proj] inj[C op,sSet] proj. \int^C (-) \cdot (-) : [C^{op}, sSet]_{proj} \times [C, [C^{op}, sSet]_{proj}]_{inj} \to [C^{op}, sSet]_{proj} \,.

Since every representable UU is cofibrant in [C op,sSet] proj[C^{op}, sSet]_{proj} and since USingUU \to \mathbf{Sing}U is a cofibration by the small object argument, we have that SingU\mathbf{Sing}U is cofibrant in [C op,sSet] proj[C^{op}, sSet]_{proj} for all UU. This means that also Sing()\mathbf{Sing}(-) is cofibrant in [C,[C op,sSet] pro] inj[C, [C^{op}, sSet]_{pro}]_{inj}. Since C()()\int^C (-) \cdot (-) is a left Quillen bifunctor it follows that C()Sing\int^C (-)\cdot \mathbf{Sing} is a left Quillen functor. Hence it preserves cofibrations and acyclic cofibrations.

This establishes that Sing\mathbf{Sing} is a left simplicial Quillen functor on [C op,sSet] proj[C^{op}, sSet]_{proj}.

Since this is a left proper model category we have by the discussion at simplicial Quillen adjunction that for showing that this does descend to the local model structure it is sufficient to check that the right adjoint preserves local fibrant objects. Which, in turn, is implied if Sing\mathbf{Sing} send covering Cech nerves to weak equivalences.

Let therefore C( iU iU)C(\coprod_i U_i \to U) be the Cech nerve of a covering family in the site CC. We may write this as the coend

C( iU i)= [k]ΔΔ[k]( i 0,,i nU i 0,,i n), C(\coprod_i U_i) = \int^{[k] \in \Delta} \Delta[k] \cdot \left( \coprod_{i_0, \cdots, i_n} U_{i_0, \cdots, i_n} \right) \,,

where by assumption on the ∞-connected site CC all the U i 0,,i nU_{i_0, \cdots, i_n} are representable. By precomposing the projection C( iU i)XC(\coprod_i U_i) \to X with the objectwise Bousfield-Kan map that replaces the simplices with the fat simplex Δ:ΔsSet\mathbf{\Delta} : \Delta \to sSet, we get the morphisms

C( iU i)= [k]ΔΔ[k]( i 0,,i nU i 0,,i n)C( iU i)U. C(\coprod_i U_i) = \int^{[k] \in \Delta} \mathbf{\Delta}[k] \cdot \left( \coprod_{i_0, \cdots, i_n} U_{i_0, \cdots, i_n} \right) \stackrel{\simeq}{\to} C(\coprod_i U_i) \to U \,.

Here the first map is an objectwise weak equivalence by Bousfield-Kan (see the examples at Reedy model structure for details). Hence by 2-out-of-3 we may equivalently check that Sing\mathbf{Sing} sends these morphisms to weak equivalences in [C op,sSet] proj[C^{op}, sSet]_{proj}.

Since Sing\mathbf{Sing} commutes with all colimits and hence coends the result of applying it to this morphism is

[k]ΔΔ[k]( i 0,,i nSingU i 0,,i n)SingU. \int^{[k] \in \Delta} \mathbf{\Delta}[k] \cdot \left( \coprod_{i_0, \cdots, i_n} \mathbf{Sing} U_{i_0, \cdots, i_n} \right) \to \mathbf{Sing}U \,.

Since the fat simplex is cofibrant in [Δ,sSet Quillen] proj[\Delta, sSet_{Quillen}]_{proj} and since the above is an evaluation of the left Quillen bifunctor

Δ()():[Δ,sSet Quillen] proj×[Δ op,[C op,sSet] proj] inj[C op,sSet] proj \int^\Delta (-) \cdot (-) : [\Delta, sSet_{Quillen}]_{proj} \times [\Delta^{op}, [C^{op}, sSet]_{proj}]_{inj} \to [C^{op}, sSet]_{proj}

the functor ΔΔ()\int^\Delta \mathbf{\Delta} \cdot (-) is left Quillen and hence preserves weak equivalences between cofibrant objects (by the factorization lemma), such as the morphisms SingU*\mathbf{Sing}U \stackrel{\simeq}{\to} *. Therefore we have a commuting diagram

[k]ΔΔ[k]( i 0,,i nSingU i 0,,i n) [k]ΔΔ[k]( i 0,,i n*) SingU *, \array{ \int^{[k] \in \Delta} \mathbf{\Delta}[k] \cdot \left( \coprod_{i_0, \cdots, i_n} \mathbf{Sing} U_{i_0, \cdots, i_n} \right) &\stackrel{\simeq}{\to}& \int^{[k] \in \Delta} \mathbf{\Delta}[k] \cdot \left( \coprod_{i_0, \cdots, i_n} * \right) \\ \downarrow && \downarrow^{\simeq} \\ \mathbf{Sing}U &\stackrel{\simeq}{\to}& * } \,,

with weak equivalences in [C op,sSet] proj[C^{op}, sSet]_{proj} as indicated: the top morphism is a weak equivalence by the argument just given, the bottom one by the small object argument-construction of Sing\mathbf{Sing} and the right vertical morphism is a weak equivalence by the assumption on an ∞-connected site. It follows by 2-out-of-3 that also the left vertical morphism is a weak equivalence.

This establishes the fact that Sing\mathbf{Sing} is left Quillen on the local model structure on simplicial presheaves. By the discussion at simplicial Quillen adjunction this implies that its left derived functor is a left adjoint (∞,1)-functor. Hence it preserves (∞,1)-colimits and so is determined on representatives. There SingU*\mathbf{Sing} U \simeq * does coindice with Π(U)*\Pi(U) \simeq *, hence both (∞,1)-functors are equivalent.


For all cofibrant X[C op,sSet] proj,locX \in [C^{op}, sSet]_{proj,loc}, the de Rham coefficient object Π dRX\mathbf{\Pi}_{dR} X is presented by the ordinary pushout

X * SingX Π dRX \array{ X &\to& * \\ \downarrow && \downarrow \\ \mathbf{Sing}X &\to& \mathbf{\Pi}_{dR} X }

in [C op,sSet][C^{op}, sSet].


By definition we have that Π dR\mathbf{\Pi}_{dR} is the (∞,1)-pushout Π(X) X*\mathbf{\Pi}(X) \coprod_X * in Sh (,1)(C)Sh_{(\infty,1)}(C). By the above proposition we have a cofibrant presentation of the pushout diagram as indicated (all three objects cofibrant, at least one of the two morphisms a cofibration). By the general discussion at homotopy colimit the ordinary pushout of that diagram does compute the (∞,1)-colimit.

Homotopy localization

We discuss that the homotopy localization of topological \infty-groupoids reproduces Top \simeq ∞Grpd, following (Dugger).


A central result about the (∞,1)-topos Sh (,1)(Top)Sh_{(\infty,1)}(Top) of ∞-stacks on Top is that the homotopy localization is equivalent to Top itself

Sh (,1)(Top) ITop. Sh_{(\infty,1)}(Top)^I \simeq Top \,.

A discussion of this is in (the nice but not quite finished) (Dugger).

In fact, this is true even for Lie ∞-groupoids, i.e. ∞-stacks on Diff: the homotopy invariant ones model plain topological spaces.

This provides a useful resolution of topological spaces that often helps to disentangle the two different roles played by a topological space: on the one hand as a model for an ∞-groupoid, in the other as a locale.


Let SPSh(Diff) locSPSh(Diff)^{loc} be the local model structure on simplicial presheaves obtained by left Bousfield localization at the Cech nerves of Cech covers with respect to the standard Grothendieck topology on Diff. This is a model for ∞-stacks on Diff.

Let SPSh(Diff) I locSPSh(Diff)^{loc}_I be furthermore the left Bousfield localization at the set of projection morphisms out of products of the form X×XX \times \mathbb{R} \to X for all XDiffX \in Diff. The \infty-stacks that are local objects with respect to these morphisms are the homotopy invariant \infty-stacks, so this localization models the (∞,1)-topos of homotopy invariant \infty-stacks on DiffDiff.

There is a adjunction

L:SSetSPSh(Diff):R L : SSet \stackrel{\leftarrow}{\to} SPSh(Diff) : R

where LL sends a simplicial set to the simplicial presheaf constant on that simplicial set, and where evaluates a simplicial presheaf on the manifold that is the point.

Theorem (Dugger)

This adjunction (LR)(L \dashv R) is a Quillen equivalence with respect to the standard model structure on simplicial sets on the left and the above model structure SPSh(Diff) loc ISPSh(Diff)_{loc}^I on the right.


Section 3.2 in

Some discussion of the (,1)(\infty,1)-category of (,1)(\infty,1)-sheaves on the category of manifolds and its restriction to open balls and a discussion of its homotopy localization is in:

Discussion of geometric realization of simplicial topological principal bundles and of their classifying spaces is in

Last revised on April 9, 2023 at 18:42:43. See the history of this page for a list of all contributions to it.