Homotopy Type Theory -- Univalent Foundations of Mathematics


Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism = propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type
falseinitial objectempty type
proposition(-1)-truncated objecth-proposition, mere proposition
proofgeneralized elementprogram
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
logical conjunctionproductproduct type
disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)
implicationinternal homfunction type
negationinternal hom into initial objectfunction type into empty type
universal quantificationdependent productdependent product type
existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)
equivalencepath space objectidentity type
equivalence classquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
completely presented setdiscrete object/0-truncated objecth-level 2-type/preset/h-set
setinternal 0-groupoidBishop set/setoid
universeobject classifiertype of types
modalityclosure operator, (idemponent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels



Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology



Paths and cylinders

Homotopy groups

Basic facts


(,1)(\infty,1)-Topos Theory

(∞,1)-topos theory





Extra stuff, structure and property



structures in a cohesive (∞,1)-topos

An introductory textbook on homotopy type theory and its use as a foundations of mathematics:

HoTT book cover

About the book (from the cover)

Homotopy type theory is a new branch of mathematics that combines aspects of several different fields in a surprising way. It is based on a recently discovered connection between homotopy theory and type theory. It touches on topics as seemingly distant as the homotopy groups of spheres, the algorithms for type checking, and the definition of weak ∞-groupoids. Homotopy type theory offers a new “univalentfoundation of mathematics, in which a central role is played by Voevodsky’s univalence axiom and higher inductive types. The present book is intended as a first systematic exposition of the basics of univalent foundations, and a collection of examples of this new style of reasoning — but without requiring the reader to know or learn any formal logic, or to use any computer proof assistant. We believe that univalent foundations will eventually become a viable alternative to set theory as the “implicit foundation” for the unformalized mathematics done by most mathematicians.

category: reference

Revised on January 7, 2016 23:35:51 by Mike Shulman (